Enhancing physicians' radiology diagnostics of COVID-19's effects on lung health by leveraging artificial intelligence

被引:2
作者
Gasulla, Oscar [1 ,2 ]
Ledesma-Carbayo, Maria J. [3 ,4 ]
Borrell, Luisa N. [2 ,5 ]
Fortuny-Profitos, Jordi [6 ]
Mazaira-Font, Ferran A. [7 ]
Allende, Jose Maria Barbero [8 ]
Alonso-Menchen, David [8 ]
Garcia-Bennett, Josep [1 ]
Del Rio-Carrrero, Belen [1 ]
Jofre-Grimaldo, Hector [1 ]
Segui, Aleix [6 ]
Monserrat, Jorge [8 ,9 ]
Teixido-Roman, Miguel [7 ]
Torrent, Adria [7 ]
Ortega, Miguel Angel [8 ,9 ]
Alvarez-Mon, Melchor [8 ,9 ,10 ]
Asunsolo, Angel [2 ,5 ,9 ]
机构
[1] Univ Barcelona, Hosp Univ Bellvitge, Lhosp De Llobregat, Spain
[2] Univ Alcala, Fac Med & Hlth Sci, Dept Surg Med & Social Sci, Alcala De Henares, Spain
[3] Univ Politecn Madrid, Biomed Image Technol, ISCIII, Madrid, Spain
[4] ISCIII, CIBER BBN, Madrid, Spain
[5] Univ New York, Grad Sch Publ Hlth & Hlth Policy, Dept Epidemiol & Biostat, New York, NY 13235 USA
[6] Univ Politecn Cataluna, Campus Nord, Barcelona, Spain
[7] Estadist & Econ Aplicada Univ Barcelona, Dept Econometria, Barcelona, Spain
[8] Univ Alcala, Fac Med & Hlth Sci, Dept Med & Med Special, Alcala De Henares, Spain
[9] Ramon & Cajal Inst Sanitary Res IRYCIS, Madrid, Spain
[10] Univ Hosp Principe Asturias, Serv Internal Med & Immune Syst Dis Rheumatol, CIBEREHD, Alcala De Henares, Spain
关键词
radiology diagnostics; COVID-19; ICU; lung area; artificial intelligence; VALIDATION; DEEP; MRI; CT; AI;
D O I
10.3389/fbioe.2023.1010679
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: This study aimed to develop an individualized artificial intelligence model to help radiologists assess the severity of COVID-19's effects on patients' lung health.Methods: Data was collected from medical records of 1103 patients diagnosed with COVID-19 using RT- qPCR between March and June 2020, in Hospital Madrid-Group (HM-Group, Spain). By using Convolutional Neural Networks, we determine the effects of COVID-19 in terms of lung area, opacities, and pulmonary air density. We then combine these variables with age and sex in a regression model to assess the severity of these conditions with respect to fatality risk (death or ICU).Results: Our model can predict high effect with an AUC of 0.736. Finally, we compare the performance of the model with respect to six physicians' diagnosis, and test for improvements on physicians' performance when using the prediction algorithm.Discussion: We find that the algorithm outperforms physicians (39.5% less error), and thus, physicians can significantly benefit from the information provided by the algorithm by reducing error by almost 30%.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment
    Jamshidi, Mohammad Behdad
    Lalbakhsh, Ali
    Talla, Jakub
    Peroutka, Zdenek
    Hadjilooei, Farimah
    Lalbakhsh, Pedram
    Jamshidi, Morteza
    La Spada, Luigi
    Mirmozafari, Mirhamed
    Dehghani, Mojgan
    Sabet, Asal
    Roshani, Saeed
    Roshani, Sobhan
    Bayat-Makou, Nima
    Mohamadzade, Bahare
    Malek, Zahra
    Jamshidi, Alireza
    Kiani, Sarah
    Hashemi-Dezaki, Hamed
    Mohyuddin, Wahab
    IEEE ACCESS, 2020, 8 : 109581 - 109595
  • [42] Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review
    Comito, Carmela
    Pizzuti, Clara
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 128
  • [43] Analysis of COVID-19 Pandemic Using Artificial Intelligence
    Amjad, Maaz
    Rodriguez Chavez, Yuriria
    Nayab, Zaryyab
    Zhila, Alisa
    Sidorov, Grigori
    Gelbukh, Alexander
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2020, PT II, 2020, 12469 : 65 - 73
  • [44] Artificial intelligence and its contribution to overcome COVID-19
    Chockalingam, Arun
    Tyagi, Vibha
    Krishnan, Rahul G.
    Khan, Shehroz S.
    Chandar, Sarath
    Beg, Mirza Faisal
    Mahajan, Vidur
    Patel, Parasvil
    Mullapudi, Sri Teja
    Thakkar, Nikita
    Bhasin, Arrti A.
    Tyagi, Atul
    Ye, Bing
    Mihailidis, Alex
    INTERNATIONAL JOURNAL OF NONCOMMUNICABLE DISEASES, 2021, 6 (05) : 8 - 18
  • [45] Role of Artificial Intelligence in Combating COVID-19 Pandemic
    Kaur, Puneet
    Kaur, Jasdeep
    Singh, Prabhsimran
    Sharma, Sandeep
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 121 - 129
  • [46] Artificial intelligence and machine learning to fight COVID-19
    Alimadadi, Ahmad
    Aryal, Sachin
    Manandhar, Ishan
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    PHYSIOLOGICAL GENOMICS, 2020, 52 (04) : 200 - 202
  • [47] Artificial intelligence at the time of COVID-19: who does the lion's share?
    Negrini, Davide
    Danese, Elisa
    Henry, Brandon M.
    Lippi, Giuseppe
    Montagnana, Martina
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2022, 60 (12) : 1881 - 1886
  • [48] Publications on COVID-19 and artificial intelligence: trends and lessons
    Kim, Yeong Jae
    Liu, Yang
    Kim, Youngeun
    Jang, Ho Won
    SCIENCE EDITING, 2024, 11 (02): : 142 - 148
  • [49] Application of Artificial Intelligence in COVID-19 Diagnosis and Therapeutics
    Asada, Ken
    Komatsu, Masaaki
    Shimoyama, Ryo
    Takasawa, Ken
    Shinkai, Norio
    Sakai, Akira
    Bolatkan, Amina
    Yamada, Masayoshi
    Takahashi, Satoshi
    Machino, Hidenori
    Kobayashi, Kazuma
    Kaneko, Syuzo
    Hamamoto, Ryuji
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [50] Application of Artificial Intelligence in COVID-19 drug repurposing
    Mohanty, Sweta
    Rashid, Md Harun A., I
    Mridul, Mayank
    Mohanty, Chandana
    Swayamsiddha, Swati
    DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2020, 14 (05) : 1027 - 1031