共 50 条
Enhancing physicians' radiology diagnostics of COVID-19's effects on lung health by leveraging artificial intelligence
被引:2
作者:
Gasulla, Oscar
[1
,2
]
Ledesma-Carbayo, Maria J.
[3
,4
]
Borrell, Luisa N.
[2
,5
]
Fortuny-Profitos, Jordi
[6
]
Mazaira-Font, Ferran A.
[7
]
Allende, Jose Maria Barbero
[8
]
Alonso-Menchen, David
[8
]
Garcia-Bennett, Josep
[1
]
Del Rio-Carrrero, Belen
[1
]
Jofre-Grimaldo, Hector
[1
]
Segui, Aleix
[6
]
Monserrat, Jorge
[8
,9
]
Teixido-Roman, Miguel
[7
]
Torrent, Adria
[7
]
Ortega, Miguel Angel
[8
,9
]
Alvarez-Mon, Melchor
[8
,9
,10
]
Asunsolo, Angel
[2
,5
,9
]
机构:
[1] Univ Barcelona, Hosp Univ Bellvitge, Lhosp De Llobregat, Spain
[2] Univ Alcala, Fac Med & Hlth Sci, Dept Surg Med & Social Sci, Alcala De Henares, Spain
[3] Univ Politecn Madrid, Biomed Image Technol, ISCIII, Madrid, Spain
[4] ISCIII, CIBER BBN, Madrid, Spain
[5] Univ New York, Grad Sch Publ Hlth & Hlth Policy, Dept Epidemiol & Biostat, New York, NY 13235 USA
[6] Univ Politecn Cataluna, Campus Nord, Barcelona, Spain
[7] Estadist & Econ Aplicada Univ Barcelona, Dept Econometria, Barcelona, Spain
[8] Univ Alcala, Fac Med & Hlth Sci, Dept Med & Med Special, Alcala De Henares, Spain
[9] Ramon & Cajal Inst Sanitary Res IRYCIS, Madrid, Spain
[10] Univ Hosp Principe Asturias, Serv Internal Med & Immune Syst Dis Rheumatol, CIBEREHD, Alcala De Henares, Spain
关键词:
radiology diagnostics;
COVID-19;
ICU;
lung area;
artificial intelligence;
VALIDATION;
DEEP;
MRI;
CT;
AI;
D O I:
10.3389/fbioe.2023.1010679
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Introduction: This study aimed to develop an individualized artificial intelligence model to help radiologists assess the severity of COVID-19's effects on patients' lung health.Methods: Data was collected from medical records of 1103 patients diagnosed with COVID-19 using RT- qPCR between March and June 2020, in Hospital Madrid-Group (HM-Group, Spain). By using Convolutional Neural Networks, we determine the effects of COVID-19 in terms of lung area, opacities, and pulmonary air density. We then combine these variables with age and sex in a regression model to assess the severity of these conditions with respect to fatality risk (death or ICU).Results: Our model can predict high effect with an AUC of 0.736. Finally, we compare the performance of the model with respect to six physicians' diagnosis, and test for improvements on physicians' performance when using the prediction algorithm.Discussion: We find that the algorithm outperforms physicians (39.5% less error), and thus, physicians can significantly benefit from the information provided by the algorithm by reducing error by almost 30%.
引用
收藏
页数:11
相关论文