Enhancing physicians' radiology diagnostics of COVID-19's effects on lung health by leveraging artificial intelligence

被引:2
作者
Gasulla, Oscar [1 ,2 ]
Ledesma-Carbayo, Maria J. [3 ,4 ]
Borrell, Luisa N. [2 ,5 ]
Fortuny-Profitos, Jordi [6 ]
Mazaira-Font, Ferran A. [7 ]
Allende, Jose Maria Barbero [8 ]
Alonso-Menchen, David [8 ]
Garcia-Bennett, Josep [1 ]
Del Rio-Carrrero, Belen [1 ]
Jofre-Grimaldo, Hector [1 ]
Segui, Aleix [6 ]
Monserrat, Jorge [8 ,9 ]
Teixido-Roman, Miguel [7 ]
Torrent, Adria [7 ]
Ortega, Miguel Angel [8 ,9 ]
Alvarez-Mon, Melchor [8 ,9 ,10 ]
Asunsolo, Angel [2 ,5 ,9 ]
机构
[1] Univ Barcelona, Hosp Univ Bellvitge, Lhosp De Llobregat, Spain
[2] Univ Alcala, Fac Med & Hlth Sci, Dept Surg Med & Social Sci, Alcala De Henares, Spain
[3] Univ Politecn Madrid, Biomed Image Technol, ISCIII, Madrid, Spain
[4] ISCIII, CIBER BBN, Madrid, Spain
[5] Univ New York, Grad Sch Publ Hlth & Hlth Policy, Dept Epidemiol & Biostat, New York, NY 13235 USA
[6] Univ Politecn Cataluna, Campus Nord, Barcelona, Spain
[7] Estadist & Econ Aplicada Univ Barcelona, Dept Econometria, Barcelona, Spain
[8] Univ Alcala, Fac Med & Hlth Sci, Dept Med & Med Special, Alcala De Henares, Spain
[9] Ramon & Cajal Inst Sanitary Res IRYCIS, Madrid, Spain
[10] Univ Hosp Principe Asturias, Serv Internal Med & Immune Syst Dis Rheumatol, CIBEREHD, Alcala De Henares, Spain
关键词
radiology diagnostics; COVID-19; ICU; lung area; artificial intelligence; VALIDATION; DEEP; MRI; CT; AI;
D O I
10.3389/fbioe.2023.1010679
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: This study aimed to develop an individualized artificial intelligence model to help radiologists assess the severity of COVID-19's effects on patients' lung health.Methods: Data was collected from medical records of 1103 patients diagnosed with COVID-19 using RT- qPCR between March and June 2020, in Hospital Madrid-Group (HM-Group, Spain). By using Convolutional Neural Networks, we determine the effects of COVID-19 in terms of lung area, opacities, and pulmonary air density. We then combine these variables with age and sex in a regression model to assess the severity of these conditions with respect to fatality risk (death or ICU).Results: Our model can predict high effect with an AUC of 0.736. Finally, we compare the performance of the model with respect to six physicians' diagnosis, and test for improvements on physicians' performance when using the prediction algorithm.Discussion: We find that the algorithm outperforms physicians (39.5% less error), and thus, physicians can significantly benefit from the information provided by the algorithm by reducing error by almost 30%.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The prospective of Artificial Intelligence in COVID-19 Pandemic
    Swati Swayamsiddha
    Kumar Prashant
    Devansh Shaw
    Chandana Mohanty
    Health and Technology, 2021, 11 : 1311 - 1320
  • [22] Health Informatics: Clinical Information Systems and Artificial Intelligence to Support Medicine in the CoViD-19 Pandemic
    Combi, Carlo
    Pozzi, Giuseppe
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 480 - 488
  • [23] Using artificial intelligence technology to fight COVID-19: a review
    Peng, Yong
    Liu, Enbin
    Peng, Shanbi
    Chen, Qikun
    Li, Dangjian
    Lian, Dianpeng
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (06) : 4941 - 4977
  • [24] Interdisciplinary research in artificial intelligence: Lessons from COVID-19
    Abbonato, Diletta
    Bianchini, Stefano
    Gargiulo, Floriana
    Venturini, Tommaso
    QUANTITATIVE SCIENCE STUDIES, 2024, 5 (04): : 922 - 935
  • [25] Artificial Intelligence and Robotics Addressing COVID-19 Pandemic's Challenges
    David, Walter
    King-Okoye, Michelle
    MODELLING AND SIMULATION FOR AUTONOMOUS SYSTEMS (MESAS 2020), 2021, 12619 : 279 - 293
  • [26] Artificial intelligence to codify lung CT in Covid-19 patients
    Belfiore, Maria Paola
    Urraro, Fabrizio
    Grassi, Roberta
    Giacobbe, Giuliana
    Patelli, Gianluigi
    Cappabianca, Salvatore
    Reginelli, Alfonso
    RADIOLOGIA MEDICA, 2020, 125 (05): : 500 - 504
  • [27] Radiology Implementation Considerations for Artificial Intelligence (AI) Applied to COVID-19, From the AJR Special Series on AI Applications
    Li, Matthew D.
    Chang, Ken
    Mei, Xueyan
    Bernheim, Adam
    Chung, Michael
    Steinberger, Sharon
    Kalpathy-Cramer, Jayashree
    Little, Brent P.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 219 (01) : 15 - 23
  • [28] Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment
    Hasan, Md. Mahadi
    Islam, Muhammad Usama
    Sadeq, Muhammad Jafar
    Fung, Wai-Keung
    Uddin, Jasim
    SENSORS, 2023, 23 (01)
  • [29] Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review
    Khan, Muzammil
    Mehran, Muhammad Taqi
    Ul Haq, Zeeshan
    Ullah, Zahid
    Naqvi, Salman Raza
    Ihsan, Mehreen
    Abbass, Haider
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [30] Artificial intelligence in ophthalmology during COVID-19 and in the post COVID-19 era
    Hallak, Joelle A.
    Scanzera, Angelica C.
    Azar, Dimitri T.
    Chan, R. V. Paul
    CURRENT OPINION IN OPHTHALMOLOGY, 2020, 31 (05) : 447 - 453