Anisotropic, ultra-sensitive, self-adhesive, biocompatible, and conductive hydrogels prepared for wearable sensors

被引:29
|
作者
Wang, Wentang [1 ]
Deng, Xinyue [1 ]
Tian, Zhipeng [1 ]
Luo, Chunhui [1 ,2 ,3 ]
机构
[1] North Minzu Univ, Coll Chem & Chem Engn, Yinchuan 750021, Ningxia, Peoples R China
[2] North Minzu Univ, Key Lab Chem Engn & Technol, State Ethn Affairs Commiss, Yinchuan 750021, Ningxia, Peoples R China
[3] North Minzu Univ, Ningxia Key Lab Solar Chem Convers Technol, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Conductive hydrogel; Poly(vinyl alcohol); Tannic acid; Carbon nanotubes; Anisotropic; Self-adhesive; EXCELLENT MECHANICAL-PROPERTIES; DOUBLE NETWORK HYDROGEL; SHAPE-MEMORY; STRAIN; TOUGH;
D O I
10.1016/j.eurpolymj.2023.112277
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Conductive hydrogels (CHs) stand as ideal candidates for flexible electronic devices. However, existing CHs cannot integrate the high sensitivity under low deformation, adhesion capability and biocompatibility into one system, which greatly retard their applications. Inspired by muscle structures, anisotropic conductive hydrogels were fabricated to address this challenge. The hydrogels were obtained through a stretch-induced orientation strategy, that is, freezing - thawing the aqueous mixture of poly(vinyl alcohol) (PVA), carbon nanotubes (CNTs), tannic acid (TA) and deionized water two cycles to obtain the precursor hydrogel; disrupting the H bonds between PVA chains by thermal stretching at 60 degrees C to induce anisotropic microstructures; and finally reforming them by freezing the pre-stretched gel at -20 degrees C for 4 h to fix the regular structures. This strategy resulted in anisotropic conductivities and mechanics. For instance, the mechanical anisotropy ratio (defined as the ratio between parallel and orthogonal directions) was 2.83. In addition, the electrical anisotropy ratio was 2.19. Meanwhile, CNTs and regular conductive channels imparted high sensitivity (GF = 8.5 within 50% strain), fast response (0.2 s), and low detect limit (0.2% strain). Additionally, the existence of catechol groups of TA enabled self-adhesion ability (maximum adhesion strength = 72.63 kPa). Due to non-toxicity of raw materials and physical process, the hydrogel was also biocompatible (cell viability = 100%). All of these merits hold great potential in human - machine interactions, medical monitoring, and smart electronic skins.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors
    Lv, Rui
    Bei, Zhongwu
    Huang, Yuan
    Chen, Yangwei
    Zheng, Zhiqiang
    You, Qingliang
    Zhu, Chao
    Cao, Yiping
    MACROMOLECULAR RAPID COMMUNICATIONS, 2020, 41 (02)
  • [2] Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors
    Li, Yongji
    Yang, Dan
    Wu, Zhiyi
    Gao, Fu-Lin
    Gao, Xuan-Zhi
    Zhao, Hao-Yu
    Li, Xiaofeng
    Yu, Zhong-Zhen
    NANO ENERGY, 2023, 109
  • [3] Self-adhesive electronic skin for ultra-sensitive healthcare monitoring
    Chen, Anbang
    Zhang, Jiayu
    Zhu, Jundong
    Yan, Zhen
    Wu, Qirui
    Han, Songjiu
    Huang, Jianren
    Guan, Lunhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4977 - 4986
  • [4] Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors
    Fan, Ling
    Hu, Lizhen
    Xie, Jinliang
    He, Zhongjie
    Zheng, Yaping
    Wei, DaiXu
    Yao, Dongdong
    Su, Fangfang
    BIOMATERIALS SCIENCE, 2021, 9 (17) : 5884 - 5896
  • [5] Self-Healable, Self-Adhesive Conductive Hydrogels Based on Integrated Multiple Interactions for Wearable Sensing
    Lu, Xinyi
    Li, Yunlong
    Gu, Xiaochun
    Zhang, Xinyue
    Ma, Ning
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2023, 224 (24)
  • [6] Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
    Liu, Ruixue
    Chen, Jichao
    Luo, Zongqing
    Zhang, Xiaojing
    Chen, Weihang
    Niu, Zhibin
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 172
  • [7] A highly resilient and ultra-sensitive hydrogel for wearable sensors
    Luo, Chunhui
    Huang, Min
    Liu, Hongmin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (15)
  • [8] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [9] Superior low-temperature tolerant, self-adhesive and antibacterial hydrogels for wearable sensors and communication devices
    Feng, Enke
    Li, Xiaoqin
    Zhang, Mengzhen
    Ma, Xinxian
    Cao, Linan
    Wu, Zhiqiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (31) : 10573 - 10583
  • [10] Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors
    Zeng, Ling-Yi
    Wang, Xin-Chun
    Wen, Ya
    Chen, Hong-Mei
    Ni, Hai-Liang
    Yu, Wen-Hao
    Bai, Yue-Feng
    Zhao, Ke-Qing
    Hu, Ping
    CARBOHYDRATE POLYMERS, 2023, 300