Interpretable machine learning for building energy management: A state-of-the-art review

被引:119
|
作者
Chen, Zhe [1 ]
Xiao, Fu [1 ,2 ]
Guo, Fangzhou [1 ]
Yan, Jinyue [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Environm & Energy Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Res Inst Smart Energy, Hong Kong, Peoples R China
来源
ADVANCES IN APPLIED ENERGY | 2023年 / 9卷
关键词
Building energy efficiency; Building energy flexibility; Interpretable machine learning; Model interpretability; Explainable artificial intelligence; ELECTRICITY CONSUMPTION; EXPLAINABLE AI; PERFORMANCE; DIAGNOSIS; ATTENTION; MODEL; LOAD;
D O I
10.1016/j.adapen.2023.100123
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Machine learning has been widely adopted for improving building energy efficiency and flexibility in the past decade owing to the ever-increasing availability of massive building operational data. However, it is challenging for end-users to understand and trust machine learning models because of their black-box nature. To this end, the interpretability of machine learning models has attracted increasing attention in recent studies because it helps users understand the decisions made by these models. This article reviews previous studies that adopted interpretable machine learning techniques for building energy management to analyze how model interpretability is improved. First, the studies are categorized according to the application stages of interpretable machine learning techniques: ante-hoc and post-hoc approaches. Then, the studies are analyzed in detail according to specific techniques with critical comparisons. Through the review, we find that the broad application of interpretable machine learning in building energy management faces the following significant challenges: (1) different terminologies are used to describe model interpretability which could cause confusion, (2) performance of interpretable ML in different tasks is difficult to compare, and (3) current prevalent techniques such as SHAP and LIME can only provide limited interpretability. Finally, we discuss the future R & D needs for improving the interpretability of black-box models that could be significant to accelerate the application of machine learning for building energy management.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Future Direction of Machine Learning for Building Energy Management: Interpretable Models
    Gugliermetti, Luca
    Cumo, Fabrizio
    Agostinelli, Sofia
    ENERGIES, 2024, 17 (03)
  • [2] Interpretable Machine Learning - A Brief History, State-of-the-Art and Challenges
    Molnar, Christoph
    Casalicchio, Giuseppe
    Bischl, Bernd
    ECML PKDD 2020 WORKSHOPS, 2020, 1323 : 417 - 431
  • [3] Machine Learning in Healthcare Analytics: A State-of-the-Art Review
    Das, Surajit
    Nayak, Samaleswari P.
    Sahoo, Biswajit
    Nayak, Sarat Chandra
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (07) : 3923 - 3962
  • [4] Machine learning assisted advanced battery thermal management system: A state-of-the-art review
    Li, Ao
    Weng, Jingwen
    Yuen, Anthony Chun Yin
    Wang, Wei
    Liu, Hengrui
    Lee, Eric Wai Ming
    Wang, Jian
    Kook, Sanghoon
    Yeoh, Guan Heng
    JOURNAL OF ENERGY STORAGE, 2023, 60
  • [5] Machine Learning and Urban Drainage Systems: State-of-the-Art Review
    Kwon, Soon Ho
    Kim, Joong Hoon
    WATER, 2021, 13 (24)
  • [6] Machine learning in medical applications: A review of state-of-the-art methods
    Shehab, Mohammad
    Abualigah, Laith
    Shambour, Qusai
    Abu-Hashem, Muhannad A.
    Shambour, Mohd Khaled Yousef
    Alsalibi, Ahmed Izzat
    Gandomi, Amir H.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [7] A review of the -state-of-the-art in data -driven approaches for building energy prediction
    Sun, Ying
    Haghighat, Fariborz
    Fung, Benjamin C. M.
    ENERGY AND BUILDINGS, 2020, 221
  • [8] State-of-the-art review on energy management and control of networked microgrids
    Singh, Arvind R.
    Raju, D. Koteswara
    Raghav, L. Phani
    Kumar, R. Seshu
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 57
  • [9] Artificial intelligence and machine learning in purchasing and supply management: A mixed-methods review of the state-of-the-art in literature and practice
    Spreitzenbarth, Jan Martin
    Bode, Christoph
    Stuckenschmidt, Heiner
    JOURNAL OF PURCHASING AND SUPPLY MANAGEMENT, 2024, 30 (01)
  • [10] Machine Learning in the Stochastic Analysis of Slope Stability: A State-of-the-Art Review
    Xu, Haoding
    He, Xuzhen
    Shan, Feng
    Niu, Gang
    Sheng, Daichao
    MODELLING, 2023, 4 (04): : 426 - 453