Measuring cell deformation by microfluidics

被引:10
作者
An, Ling [1 ]
Ji, Fenglong [2 ]
Zhao, Enming [1 ]
Liu, Yi [1 ]
Liu, Yaling [3 ,4 ]
机构
[1] Dali Univ, Sch Engn, Dali, Yunnan, Peoples R China
[2] Wuyi Univ, Sch Text Mat & Engn, Jiangmen, Guangdong, Peoples R China
[3] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[4] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
关键词
microfluidics; cell deformation; cell imaging; high-throughput analysis; cell mechanical characterization; RED-BLOOD-CELLS; CIRCULATING TUMOR-CELLS; LABEL-FREE SEPARATION; CANCER-CELLS; MECHANICAL CHARACTERIZATION; DEFORMABILITY; CYTOMETRY; DEVICE; CHIP; BIOMECHANICS;
D O I
10.3389/fbioe.2023.1214544
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microfluidics is an increasingly popular method for studying cell deformation, with various applications in fields such as cell biology, biophysics, and medical research. Characterizing cell deformation offers insights into fundamental cell processes, such as migration, division, and signaling. This review summarizes recent advances in microfluidic techniques for measuring cellular deformation, including the different types of microfluidic devices and methods used to induce cell deformation. Recent applications of microfluidics-based approaches for studying cell deformation are highlighted. Compared to traditional methods, microfluidic chips can control the direction and velocity of cell flow by establishing microfluidic channels and microcolumn arrays, enabling the measurement of cell shape changes. Overall, microfluidics-based approaches provide a powerful platform for studying cell deformation. It is expected that future developments will lead to more intelligent and diverse microfluidic chips, further promoting the application of microfluidics-based methods in biomedical research, providing more effective tools for disease diagnosis, drug screening, and treatment.
引用
收藏
页数:16
相关论文
共 112 条
[21]   Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping [J].
Deng, Yanxiang ;
Davis, Steven P. ;
Yang, Fan ;
Paulsen, Kevin S. ;
Kumar, Maneesh ;
DeVaux, Rebecca Sinnott ;
Wang, Xianhui ;
Conklin, Douglas S. ;
Oberai, Assad ;
Herschkowitz, Jason I. ;
Chung, Aram J. .
SMALL, 2017, 13 (28)
[22]   Cell separation using tilted-angle standing surface acoustic waves [J].
Ding, Xiaoyun ;
Peng, Zhangli ;
Lin, Sz-Chin Steven ;
Geri, Michela ;
Li, Sixing ;
Li, Peng ;
Chen, Yuchao ;
Dao, Ming ;
Suresh, Subra ;
Huang, Tony Jun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (36) :12992-12997
[23]   A Microfluidic Deformability Assessment of Pathological Red Blood Cells Flowing in a Hyperbolic Converging Microchannel [J].
Faustino, Vera ;
Rodrigues, Raquel O. ;
Pinho, Diana ;
Costa, Elisio ;
Santos-Silva, Alice ;
Miranda, Vasco ;
Amaral, Joana S. ;
Lima, Rui .
MICROMACHINES, 2019, 10 (10)
[24]   The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows [J].
Forsyth, Alison M. ;
Wan, Jiandi ;
Ristenpart, William D. ;
Stone, Howard A. .
MICROVASCULAR RESEARCH, 2010, 80 (01) :37-43
[25]   A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays [J].
Gabriele, Sylvain ;
Versaevel, Marie ;
Preira, Pascal ;
Theodoly, Olivier .
LAB ON A CHIP, 2010, 10 (11) :1459-1467
[26]   Recent advances in single cell manipulation and biochemical analysis on microfluidics [J].
Gao, Dan ;
Jin, Feng ;
Zhou, Min ;
Jiang, Yuyang .
ANALYST, 2019, 144 (03) :766-781
[27]   A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence [J].
Gifford, Sean C. ;
Derganc, Jure ;
Shevkoplyas, Sergey S. ;
Yoshida, Tatsuro ;
Bitensky, Mark W. .
BRITISH JOURNAL OF HAEMATOLOGY, 2006, 135 (03) :395-404
[28]   Standardized microgel beads as elastic cell mechanical probes [J].
Girardo, S. ;
Traeber, N. ;
Wagner, K. ;
Cojoc, G. ;
Herold, C. ;
Goswami, R. ;
Schluessler, R. ;
Abuhattum, S. ;
Taubenberger, A. ;
Reichel, F. ;
Mokbel, D. ;
Herbig, M. ;
Schuermann, M. ;
Mueller, P. ;
Heida, T. ;
Jacobi, A. ;
Ulbricht, E. ;
Thiele, J. ;
Werner, C. ;
Guck, J. .
JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (39) :6245-6261
[29]   An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution [J].
Girault, Mathias ;
Kim, Hyonchol ;
Arakawa, Hisayuki ;
Matsuura, Kenji ;
Odaka, Masao ;
Hattori, Akihiro ;
Terazono, Hideyuki ;
Yasuda, Kenji .
SCIENTIFIC REPORTS, 2017, 7
[30]   Microfluidic analysis of red blood cell deformability [J].
Guo, Quan ;
Duffy, Simon P. ;
Matthews, Kerryn ;
Santoso, Aline T. ;
Scott, Mark D. ;
Ma, Hongshen .
JOURNAL OF BIOMECHANICS, 2014, 47 (08) :1767-1776