Measuring cell deformation by microfluidics

被引:10
作者
An, Ling [1 ]
Ji, Fenglong [2 ]
Zhao, Enming [1 ]
Liu, Yi [1 ]
Liu, Yaling [3 ,4 ]
机构
[1] Dali Univ, Sch Engn, Dali, Yunnan, Peoples R China
[2] Wuyi Univ, Sch Text Mat & Engn, Jiangmen, Guangdong, Peoples R China
[3] Lehigh Univ, Dept Bioengn, Bethlehem, PA 18015 USA
[4] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
关键词
microfluidics; cell deformation; cell imaging; high-throughput analysis; cell mechanical characterization; RED-BLOOD-CELLS; CIRCULATING TUMOR-CELLS; LABEL-FREE SEPARATION; CANCER-CELLS; MECHANICAL CHARACTERIZATION; DEFORMABILITY; CYTOMETRY; DEVICE; CHIP; BIOMECHANICS;
D O I
10.3389/fbioe.2023.1214544
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microfluidics is an increasingly popular method for studying cell deformation, with various applications in fields such as cell biology, biophysics, and medical research. Characterizing cell deformation offers insights into fundamental cell processes, such as migration, division, and signaling. This review summarizes recent advances in microfluidic techniques for measuring cellular deformation, including the different types of microfluidic devices and methods used to induce cell deformation. Recent applications of microfluidics-based approaches for studying cell deformation are highlighted. Compared to traditional methods, microfluidic chips can control the direction and velocity of cell flow by establishing microfluidic channels and microcolumn arrays, enabling the measurement of cell shape changes. Overall, microfluidics-based approaches provide a powerful platform for studying cell deformation. It is expected that future developments will lead to more intelligent and diverse microfluidic chips, further promoting the application of microfluidics-based methods in biomedical research, providing more effective tools for disease diagnosis, drug screening, and treatment.
引用
收藏
页数:16
相关论文
共 112 条
[1]   Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases [J].
Allard, WJ ;
Matera, J ;
Miller, MC ;
Repollet, M ;
Connelly, MC ;
Rao, C ;
Tibbe, AGJ ;
Uhr, JW ;
Terstappen, LWMM .
CLINICAL CANCER RESEARCH, 2004, 10 (20) :6897-6904
[2]   3D-printed microfluidic devices [J].
Amin, Reza ;
Knowlton, Stephanie ;
Hart, Alexander ;
Yenilmez, Bekir ;
Ghaderinezhad, Fariba ;
Katebifar, Sara ;
Messina, Michael ;
Khademhosseini, Ali ;
Tasoglu, Savas .
BIOFABRICATION, 2016, 8 (02)
[3]   Cells Under Stress: An Inertial-Shear Microfluidic Determination of Cell Behavior [J].
Armistead, Fern J. ;
Gala De Pablo, Julia ;
Gadelha, Hermes ;
Peyman, Sally A. ;
Evans, Stephen D. .
BIOPHYSICAL JOURNAL, 2019, 116 (06) :1127-1135
[4]   Deformability of Tumor Cells versus Blood Cells [J].
Bagnall, Josephine Shaw ;
Byun, Sangwon ;
Begum, Shahinoor ;
Miyamoto, David T. ;
Hecht, Vivian C. ;
Maheswaran, Shyamala ;
Stott, Shannon L. ;
Toner, Mehmet ;
Hynes, Richard O. ;
Manalis, Scott R. .
SCIENTIFIC REPORTS, 2015, 5
[5]   Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming [J].
Bashant, Kathleen R. ;
Vassallo, Arlette ;
Herold, Christoph ;
Berner, Reinhard ;
Menschner, Leonhard ;
Subburayalu, Julien ;
Kaplan, Mariana J. ;
Summers, Charlotte ;
Guck, Jochen ;
Chilvers, Edwin R. ;
Toepfner, Nicole .
JOURNAL OF LEUKOCYTE BIOLOGY, 2019, 105 (06) :1143-1153
[6]   An outlook on microfluidics: the promise and the challenge [J].
Battat, Sarah ;
Weitz, David A. ;
Whitesides, George M. .
LAB ON A CHIP, 2022, 22 (03) :530-536
[7]   3D Printing of Inertial Microfluidic Devices [J].
Bazaz, Sajad Razavi ;
Rouhi, Omid ;
Raoufi, Mohammad Amin ;
Ejeian, Fatemeh ;
Asadnia, Mohsen ;
Jin, Dayong ;
Warkiani, Majid Ebrahimi .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Physics and applications of microfluidics in biology [J].
Beebe, DJ ;
Mensing, GA ;
Walker, GM .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :261-286
[9]   Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns [J].
Beijer, Nick R. M. ;
Nauryzgaliyeva, Zarina M. ;
Arteaga, Estela M. ;
Pieuchot, Laurent ;
Anselme, Karine ;
van de Peppel, Jeroen ;
Vasilevich, Aliaksei S. ;
Groen, Nathalie ;
Roumans, Nadia ;
Hebels, Dennie G. A. J. ;
de Boer, Jan .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]  
Bow H, 2011, LAB CHIP, V11, P1065, DOI [10.1039/c0lc00472c, 10.1039/c01c00472c]