3D printed octet plate-lattices for tunable energy absorption

被引:21
|
作者
Nam, Ryan [1 ]
Jakubinek, Michael [2 ]
Niknam, Hamed [3 ]
Rahmat, Meysam [4 ]
Ashrafi, Behnam [3 ]
Naguib, Hani E. [1 ,5 ]
机构
[1] Univ Toronto, Toronto Smart Mat & Struct, Mech & Ind Engn, Toronto, ON, Canada
[2] Natl Res Council Canada, Div Emerging Technol, Ottawa, ON, Canada
[3] Natl Res Council Canada, Aerosp Res Ctr, Montreal, PQ, Canada
[4] Natl Res Council Canada, Aerosp Res Ctr, Ottawa, ON, Canada
[5] Ecole Polytech Montreal, Dept Mech Engn, Lab MultiScale Mech, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Energy absorption; Additive manufacturing; Lattice structures; Finite element analysis; SANDWICH PANELS; MECHANICAL-PROPERTIES; HONEYCOMB STRUCTURES; METAMATERIALS; BEHAVIOR; DESIGN;
D O I
10.1016/j.matdes.2023.111835
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tunable energy absorption achieved through grading of lattice structures shows high potential to be used in lightweight cellular cores for energy absorbing structures. This study investigates structurally graded and multi-material lattices consisting of plate-based octet unit cells, under quasi-static compression, to assess their energy absorption ability. Variations in the structure and material compositions of the plate -lattice structures are achieved through changing the plate thickness and through changing the filament material along the lattice in the direction of applied compressive force. The compressive stress-strain behavior reveals a near 10% increase of specific energy absorption (SEA) in the plate thickness graded designs at higher strain compared to the baseline octet lattices. The multi-material arrangements signif-icantly modified onset location of the structure collapse. Finite element models of the structures were developed, and good agreements with experimental results were observed. Effects of varying each of the unit cell geometric parameters were analyzed, and the high sensitivity to the plate inclination angle, which resulted in greater changes to the maximum stress values and control of the overall SEA, was iden-tified. The results demonstrate the capacity to adapt the octet lattice structure design through additive manufacturing to better suit the expected load and application.Crown Copyright CO 2023 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] DESIGN AND BIOLOGICAL SIMULATION OF 3D PRINTED LATTICES FOR BIOMEDICAL APPLICATIONS
    Egan, Paul F.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2A, 2020,
  • [42] PROGRAMMABLE STIFFNESS AND APPLICATIONS OF 3D PRINTED TPU GRID LATTICES
    Yuan, Yifan
    Sung, Cynthia
    PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 8A, 2021,
  • [43] Impact Performance of 3D Printed Spatially Varying Elastomeric Lattices
    Dwyer, Charles M.
    Carrillo, Jose G.
    de la Pena, Jose Angel Diosdado
    Santiago, Carolyn Carradero
    MacDonald, Eric
    Rhinehart, Jerry
    Williams, Reed M.
    Burhop, Mark
    Yelamanchi, Bharat
    Cortes, Pedro
    POLYMERS, 2023, 15 (05)
  • [44] 3D PRINTED LATTICES WITH SPATIALLY VARIANT SELF-COLLIMATION
    Rumpf, Raymond C.
    Pazos, Javier
    Garcia, Cesar R.
    Ochoa, Luis
    Wicker, Ryan
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 139 : 1 - 14
  • [45] MECHANICAL TESTING AND RELIABILITY ANALYSIS FOR 3D PRINTED CUBIC LATTICES
    Kulkarni, Nitin Nagesh
    Ekwaro-Osire, Stephen
    Egan, Paul F.
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 14, 2020,
  • [46] The Energy Absorption Behavior of 3D-Printed Polymeric Octet-Truss Lattice Structures of Varying Strut Length and Radius
    Bolan, Matthew
    Dean, Mackenzie
    Bardelcik, Alexander
    POLYMERS, 2023, 15 (03)
  • [47] Experimental investigation on 3D printed lightweight sandwich structures for energy absorption aerospace applications
    Acanfora, Valerio
    Sellitto, Andrea
    Russo, Angela
    Zarrelli, Mauro
    Riccio, Aniello
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 137
  • [48] Energy absorption and piezoresistive characteristics of 3D printed honeycomb composites with hybrid cell architecture
    Andrew, J. Jefferson
    Khan, Kamran A.
    Umer, Rehan
    Schiffer, Andreas
    VIRTUAL AND PHYSICAL PROTOTYPING, 2024, 19 (01)
  • [49] 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior
    Townsend, Scott
    Adams, Rhosslyn
    Robinson, Michael
    Hanna, Benjamin
    Theobald, Peter
    MATERIALS & DESIGN, 2020, 195
  • [50] Statistical model for impact and energy absorption of 3D printed coconut Wood-PLA
    Kananathan J.
    Samykano M.
    Kadirgama K.
    Ramasamy D.
    Rahman M.M.
    Energy Engineering: Journal of the Association of Energy Engineering, 2021, 118 (05): : 1305 - 1315