Early detection and control of anthracnose disease in cashew leaves to improve crop yield using image processing and machine learning techniques

被引:3
|
作者
Sudha, P. [1 ]
Kumaran, P. [1 ]
机构
[1] Natl Inst Technol Puducherry, Dept Comp Sci & Engn, Karaikal, India
关键词
Anthracnose disease; Leaf Image segmentation; Precision agriculture; Machine learning techniques; CLASSIFICATION; SEGMENTATION;
D O I
10.1007/s11760-023-02552-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Agriculture is one of the primary pillars powering India's economy. It is alarming to note that India's agriculture rate is declining steeply. Climate change, environmental pollution, and soil erosion are well-known factors affecting crop productivity. The increasing prevalence of plant diseases is also a significant factor affecting agriculture. Early disease detection and mitigation actions based on identified conditions in the plants are critical in increasing crop productivity. This study considers a machine learning model for detecting disease in cashew leaves. This work concentrates on Anthracnose disease, which leads to severe yield loss when it affects the cashew plant. In this regard, cashew leaves are collected and used to train various machine learning classifiers to identify and classify the disease. This work focuses on the segmentation and classification of leaves using multiple Machine Learning models. Basic segmentation approaches like Global Threshold, Adaptive Gaussian, Adaptive Mean, Otsu, Canny, Sobel, and K-Means, and Machine Learning models like Random Forest, Decision Tree, KNN, Logistic Regression, Gaussian Naive Bayes Classifiers are employed. The final classification employs a Hard and Soft voting classifier and the Decision Tree, KNN, Logistic Regression, and Gaussian Naive Bayes classifiers. Finally, we observe that K-Means segmentation with Random Forest outperforms other classifiers. The accuracy obtained from the Random Forest classifier is 96.7% for the CCDDB dataset, and the accuracy obtained from the Random Forest classifier is 99.7% for the PDDB dataset.
引用
收藏
页码:3323 / 3330
页数:8
相关论文
共 50 条
  • [31] Analysis of agricultural crop yield prediction using statistical techniques of machine learning
    Pant, Janmejay
    Pant, R. P.
    Singh, Manoj Kumar
    Singh, Devesh Pratap
    Pant, Himanshu
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10922 - 10926
  • [32] Predictive Modeling of Crop Yield in Precision Agriculture Using Machine Learning Techniques
    Raj, G. Bhupal
    EswararaoBoddepalli
    Veena, C. H.
    Manjunatha
    Singla, Atul
    Dhanraj, JoshuvaArockia
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [33] Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning
    Yang, Ruizhe
    Wu, Zhenchao
    Fang, Wentai
    Zhang, Hongliang
    Wang, Wenqi
    Fu, Longsheng
    Majeed, Yaqoob
    Li, Rui
    Cui, Yongjie
    INFORMATION PROCESSING IN AGRICULTURE, 2023, 10 (01): : 1 - 10
  • [34] Smart Agriculture Drone for Crop Spraying Using Image-Processing and Machine Learning Techniques: Experimental Validation
    Singh, Edward
    Pratap, Aashutosh
    Mehta, Utkal
    Azid, Sheikh Izzal
    IOT, 2024, 5 (02): : 250 - 270
  • [35] Plant Disease Detection and Severity Assessment Using Image Processing and Deep Learning Techniques
    Verma S.
    Chug A.
    Singh A.P.
    Singh D.
    SN Computer Science, 5 (1)
  • [36] Analysis and Implementation of Disease Detection in Leafs and Fruit Using Image Processing and Machine Learning
    Singh M.
    Ayuub S.
    Baronia A.
    Soni D.
    SN Computer Science, 4 (5)
  • [37] Detection of Undeserved Sick Leaves in Hospitals using Machine Learning Techniques
    Brahimi, Samiha
    El Hussein, Mariam
    Al-Reedy, Abdullah
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2022, 35
  • [38] APPLICATION OF MACHINE LEARNING TECHNIQUES IN EARLY DISEASE DETECTION: A REVIEW
    Goyal, A.
    Chadha, N.
    Riggs, J.
    VALUE IN HEALTH, 2019, 22 : S721 - S721
  • [39] Development of multistage crop yield estimation model using machine learning and deep learning techniques
    Aravind, K. S.
    Vashisth, Ananta
    Krishnan, P.
    Kundu, Monika
    Prasad, Shiv
    Meena, M. C.
    Lama, Achal
    Das, Pankaj
    Das, Bappa
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2025, 69 (02) : 499 - 515
  • [40] Multiple Disease Detection using Machine Learning Techniques
    Acharya, Dipanjan
    Eashwer, K.
    Kumar, Soumya
    Sivakumar, R.
    Kishoreraja, P. C.
    Srinivasagan, Ramasamy
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (13) : 120 - 137