Tunable terahertz double plasmon induced-transparency based on monolayer patterned graphene structure

被引:12
|
作者
Meng, Qiqi [1 ]
Chen, Fang [1 ]
Xu, Yiping [1 ]
Cheng, Shubo [1 ]
Yang, Wenxing [1 ]
Yao, Duanzheng [2 ]
Yi, Zao [3 ]
机构
[1] Yangtze Univ, Inst Quantum Opt & Informat Photon, Sch Phys & Optoelect Engn, Jingzhou 434023, Peoples R China
[2] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China
[3] Southwest Univ Sci & Technol, Joint Lab Extreme Condit Matter Properties, Mianyang 621010, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasmonic induced transparency; Graphene; Coupled mode theory; Sensors; METAMATERIAL; ABSORBER; ABSORPTION; SENSOR; HYBRIDIZATION; SWITCH; LAYER;
D O I
10.1016/j.photonics.2023.101132
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, tunable double plasmon-induced transparency (PIT) is achieved in a monolayer-patterned gra-phene structure. The proposed structure is composed of a middle graphene-strip and two pi-shape graphene microstructures. Results show that the double PIT effect is originated from the destructive interference between two bright modes and one dark mode, a equivalent coupled mode theory (CMT) model is utilized to confirm the finite-difference-time-domain (FDTD) simulation. The influences of the chemical potential, scattering rate, and geometrical size on the double PIT transmission spectrum are investigated. The modulation properties of the proposed structure have been studied in detail and it shows excellent modulation depth (MD) and relatively low insertion loss (IL). Moreover, the proposed structure shows a maximum refractive index sensitivity about2.38 THz/RIU, and the maximum figure of merit (FOM) can reach 43.4. The effect of the refractive index of the substrate on the sensing performance is also investigated. Thus, the proposed structure can be applied in the areas of multi-function optical switches, terahertz slow light devices, modulators, and sensors.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Dynamically Tunable Terahertz Plasmon-Induced Transparency Analogy Based on Asymmetric Graphene Resonator Arrays
    Ni, Bo
    Tai, Guangsuo
    Ni, Haibin
    Yang, Lingsheng
    Liu, Heng
    Huang, Lingli
    Wang, Jiang
    Chang, Jianhua
    PLASMONICS, 2022, 17 (01) : 389 - 398
  • [22] Terahertz plasmonic sensing based on tunable multispectral plasmon-induced transparency and absorption in graphene metamaterials
    Li, Min
    Xiong, Cuixiu
    Liu, Chao
    Zeng, Biao
    Ruan, Banxian
    Zhang, Baihui
    Gao, Enduo
    Li, Hongjian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (24)
  • [23] Tunable electromagnetically induced transparency based on terahertz graphene metamaterial
    He, Xunjun
    Huang, Yiming
    Yang, Xingyu
    Zhu, Lei
    Wu, Fengmin
    Jiang, Jiuxing
    RSC ADVANCES, 2017, 7 (64) : 40321 - 40326
  • [24] Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial
    Xu, Hui
    Li, Hongjian
    He, Zhihui
    Chen, Zhiquan
    Zheng, Mingfei
    Zhao, Mingzhuo
    OPTICS EXPRESS, 2017, 25 (17): : 20780 - 20790
  • [25] Graphene-based tunable terahertz electromagnetically induced transparency using metamaterial structure
    Xu, Kai-Da
    Xia, Shengpei
    Cai, Yijun
    Li, Jianxing
    Cui, Jianlei
    Chen, Chengying
    Zhou, Jianmei
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (11) : 1917 - 1922
  • [26] Polarization tunable terahertz plasmon induced transparency in graphene ring-rod metamaterial
    Jiang, Xiao-Qiang
    Wang, Kai
    Fan, Wen-Hui
    ELEVENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2019), 2019, 11209
  • [27] Tunable plasmon-induced transparency with graphene-sheet structure
    Wang, Yueke
    Shen, Xinru
    Chen, Quansheng
    MODERN PHYSICS LETTERS B, 2016, 30 (19):
  • [28] Tunable plasmon-induced transparency with a dielectric grating-coupled graphene structure for slowing terahertz waves
    Wang, Tianzhi
    Yan, Fei
    Wang, Ruoxing
    Tian, Fengjun
    Li, Li
    APPLIED OPTICS, 2020, 59 (24) : 7179 - 7185
  • [29] High-performance multi-frequency optical switch based on tunable quadruple plasmon-induced transparency in monolayer patterned graphene metamaterial
    Zhanyu Chen
    Yiping Xu
    Liyong Ren
    Fang Chen
    Shubo Cheng
    Zao Yi
    Guohui Xiao
    Xin Huang
    Xiaodong Zeng
    Optical and Quantum Electronics, 56
  • [30] High-performance multi-frequency optical switch based on tunable quadruple plasmon-induced transparency in monolayer patterned graphene metamaterial
    Chen, Zhanyu
    Xu, Yiping
    Ren, Liyong
    Chen, Fang
    Cheng, Shubo
    Yi, Zao
    Xiao, Guohui
    Huang, Xin
    Zeng, Xiaodong
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)