WOx nanowire supported ultra-fine Ir-IrOx nanocatalyst with compelling OER activity and durability

被引:40
作者
Chueh, Lu-Yu [1 ]
Kuo, Chun-Han [2 ]
Tsai, Ding-Huei [1 ]
Tsai, Meng-Hsuan [3 ]
Chen, Han-Yi [2 ]
Wang, Chia-Hsin [3 ]
Pan, Yung-Tin [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem Engn, Kuang Fu Rd 101,Sect 2, Hsinchu 300044, Taiwan
[2] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Kuang Fu Rd 101,Sect 2, Hsinchu 300044, Taiwan
[3] Natl Synchrotron Radiat Res Ctr, Hsinchu, Taiwan
关键词
Oxygen evolution reaction; Iridium; Core-shell; Nanowire; Tungsten oxide; XPS; OXYGEN EVOLUTION ACTIVITY; WATER ELECTROLYSIS; CATALYST-SUPPORT; TUNGSTEN-OXIDE; IRIDIUM; STABILITY; REDUCTION; PRINCIPLES; ELECTRODES; EFFICIENT;
D O I
10.1016/j.cej.2023.142613
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ultra-fine iridium (Ir) nanocatalyst is successfully dispersed and stabilized on sub-stoichiometric tungsten oxide nanowires (WOxNW) forming an active and stable OER catalyst. With its abundant amount of exposed active surfaces, the WOxNW supported Ir catalyst shows a high mass activity of 812 A/gIr at 1.55 V vs RHE. This value is three times higher than Ir-black and 30 times higher than Ir supported on antimony-doped tin oxide. The Ir@WOxNW possesses much satisfactory stability, showing a loss of only 40 % compared with the nearly 100 % loss of Ir-black after 1,000 accelerated durability testing cycles. Non-destructive depth profile by synchrotronbased XPS and density functional calculations unambiguously reveal the strong catalyst-support interaction between the WOxNW and the supported Ir catalyst. Due to the inhibited oxidation, the OER active core-shell-like structure of the Ir-IrO2 is well-maintained on the WOxNW supports under OER testing conditions. The developed catalyst shows high potential to significantly reduce Ir usage for practical water electrolysis.
引用
收藏
页数:12
相关论文
共 63 条
[11]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[12]   The hydrogen economy [J].
Crabtree, GW ;
Dresselhaus, MS ;
Buchanan, MV .
PHYSICS TODAY, 2004, 57 (12) :39-44
[13]   State-of-the-Art Iridium-Based Catalysts for Acidic Water Electrolysis: A Minireview of Wet-Chemistry Synthesis Methods Preparation routes for active and durable iridium catalysts [J].
Dhawan, Himanshi ;
Secanell, Marc ;
Semagina, Natalia .
JOHNSON MATTHEY TECHNOLOGY REVIEW, 2021, 65 (02) :247-262
[14]   Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces [J].
Ding, Chunmei ;
Shi, Jingying ;
Wang, Zhiliang ;
Li, Can .
ACS CATALYSIS, 2017, 7 (01) :675-688
[15]  
E. Commission Directorate-General for Energy, 2012, EN ROADM 2050, DOI [10.2833/10759, DOI 10.2833/10759]
[16]   OER Catalyst Stability Investigation Using RDE Technique: A Stability Measure or an Artifact? [J].
El-Sayed, Hany A. ;
Weiss, Alexandra ;
Olbrich, Lorenz F. ;
Putro, Garin P. ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) :F458-F464
[17]   Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis [J].
Feng, Jianrui ;
Lv, Fan ;
Zhang, Weiyu ;
Li, Peihao ;
Wang, Kai ;
Yang, Chao ;
Wang, Bin ;
Yang, Yong ;
Zhou, Jinhui ;
Lin, Fei ;
Wang, Gui-Chang ;
Guo, Shaojun .
ADVANCED MATERIALS, 2017, 29 (47)
[18]   The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited [J].
Freakley, S. J. ;
Ruiz-Esquius, J. ;
Morgan, D. J. .
SURFACE AND INTERFACE ANALYSIS, 2017, 49 (08) :794-799
[19]   ALD-Coated Mesoporous Iridium-Titanium Mixed Oxides: Maximizing Iridium Utilization for an Outstanding OER Performance [J].
Frisch, Marvin ;
Raza, Muhammad Hamid ;
Ye, Meng-Yang ;
Sachse, Rene ;
Paul, Benjamin ;
Gunder, Rene ;
Pinna, Nicola ;
Kraehnert, Ralph .
ADVANCED MATERIALS INTERFACES, 2022, 9 (06)
[20]  
Greeley J, 2009, NAT CHEM, V1, P552, DOI [10.1038/NCHEM.367, 10.1038/nchem.367]