Deterministic entanglement distribution on series-parallel quantum networks

被引:5
作者
Meng, Xiangyi [1 ,2 ]
Cui, Yulong [3 ]
Gao, Jianxi [4 ]
Havlin, Shlomo [5 ,6 ]
Ruckenstein, Andrei E. [6 ]
机构
[1] Northeastern Univ, Network Sci Inst, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[3] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[4] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[5] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[6] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
美国国家科学基金会;
关键词
PERCOLATION; REPEATERS;
D O I
10.1103/PhysRevResearch.5.013225
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
(Received 2021; accepted February 2023; published 2023) The performance of distributing entanglement between two distant nodes in a large-scale quantum network (QN) of partially entangled bipartite pure states is generally benchmarked against the classical entanglement per-colation (CEP) scheme. Improvements beyond CEP were only achieved by nonscalable strategies for restricted QN topologies. This paper explores and amplifies a new and more effective mapping of a QN, referred to as concurrence percolation theory (ConPT), that suggests using deterministic rather than probabilistic protocols for scalably improving on CEP across arbitrary QN topology. More precisely, we implement ConPT via a deter-ministic entanglement transmission (DET) scheme that is fully analogous to resistor network analysis, with the corresponding series and parallel rules represented by deterministic entanglement swapping and concentration protocols, respectively. The main contribution of this paper is to establish a powerful mathematical framework, which is applicable to arbitrary d-dimensional information carriers (qudits), that provides different natural optimality metrics in terms of generalized k-concurrences (a family of fundamental entanglement measures) for different QN topologies. In particular, we conclude that the introduced DET scheme (a) is optimal over the well-known nested repeater protocol for distilling entanglement from partially entangled qubits and (b) leads to higher success probabilities of obtaining a maximally entangled state than using CEP. The implementation of the DET scheme is experimentally feasible as tested on IBM's quantum computation platform.
引用
收藏
页数:16
相关论文
共 46 条
  • [21] Protocol and quantum circuits for realizing deterministic entanglement concentration
    Gu, YJ
    Li, WD
    Guo, GC
    [J]. PHYSICAL REVIEW A, 2006, 73 (02):
  • [22] Entanglement of a pair of quantum bits
    Hill, S
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (26) : 5022 - 5025
  • [23] Beating the channel capacity limit for superdense coding with entangled ququarts
    Hu, Xiao-Min
    Guo, Yu
    Liu, Bi-Heng
    Huang, Yun-Feng
    Li, Chuan-Feng
    Guo, Guang-Can
    [J]. SCIENCE ADVANCES, 2018, 4 (07):
  • [24] Deterministic delivery of remote entanglement on a quantum network
    Humphreys, Peter C.
    Kalb, Norbert
    Morits, Jaco P. J.
    Schouten, Raymond N.
    Vermeulen, Raymond F. L.
    Twitchen, Daniel J.
    Markham, Matthew
    Hanson, Ronald
    [J]. NATURE, 2018, 558 (7709) : 268 - +
  • [25] Entanglement-assisted local manipulation of pure quantum states
    Jonathan, D
    Plenio, MB
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (17) : 3566 - 3569
  • [26] Entanglement distillation between solid-state quantum network nodes
    Kalb, N.
    Reiserer, A. A.
    Humphreys, P. C.
    Bakermans, J. J. W.
    Kamerling, S. J.
    Nickerson, N. H.
    Benjamin, S. C.
    Twitchen, D. J.
    Markham, M.
    Hanson, R.
    [J]. SCIENCE, 2017, 356 (6341) : 928 - 932
  • [27] Demonstration of a High-Fidelity CNOT Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression
    Kandala, A.
    Wei, K. X.
    Srinivasan, S.
    Magesan, E.
    Carnevale, S.
    Keefe, G. A.
    Klaus, D.
    Dial, O.
    McKay, D. C.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (13)
  • [28] The quantum internet
    Kimble, H. J.
    [J]. NATURE, 2008, 453 (7198) : 1023 - 1030
  • [29] Concurrence percolation threshold of large-scale quantum networks
    Malik, Omar
    Meng, Xiangyi
    Havlin, Shlomo
    Korniss, Gyorgy
    Szymanski, Boleslaw Karol
    Gao, Jianxi
    [J]. COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [30] Concurrence Percolation in Quantum Networks
    Meng, Xiangyi
    Gao, Jianxi
    Havlin, Shlomo
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (17)