DIFFERENCE FINITE ELEMENT METHOD FOR THE 3D STEADY NAVIER-STOKES EQUATIONS
被引:11
|
作者:
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Inst Math & Phys, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Inst Math & Phys, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Feng, Xinlong
[1
]
Lu, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXinjiang Univ, Inst Math & Phys, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Lu, Xiaoli
[2
]
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Xian 830046, Peoples R China
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXinjiang Univ, Inst Math & Phys, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
He, Yinnian
[3
,4
]
机构:
[1] Xinjiang Univ, Inst Math & Phys, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Xinjiang Univ, Coll Math & Syst Sci, Xian 830046, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
In this work, a difference finite element method for the 3D steady Navier-Stokes equations is presented. This new method consists of transmitting the finite element solution (uh,ph) of the three-dimensional (3D) steady Navier--Stokes equations into a series of the finite element solutions (unk h ,pnk h ) of the 2D steady Oseen iterative equations, which are solved by using the finite element pair (P1b, P1b, P1) \times P1 satisfying the discrete inf-sup condition in a 2D domain \omega . In addition, we use finite element pair ((P1 b ,P1 b ,P1) \times P1) \times (P1 \times P0) to solve the 3D steady Oseen iterative equations, where the velocity-pressure pair satisfies the discrete inf-sup condition in a 3D domain \Omega under the quasi-uniform mesh condition. To overcome the difficulty of nonlinearity, we apply the Oseen iterative method and present the weak formulation of the difference finite element method for solving the 3D steady \tau Oseen iterative equations. Moreover, we provide the existence and uniqueness of the difference finite element solutions (unh,pnh) = (\sumkl3 =0 unk h \phik(z),\sumkl3=1pnkh \psik(z)) of the 3D steady Oseen iterative equations and deduce the first order convergence with respect to (\sigman+1,\tau ,h) of the difference finite element solutions (unh, pnh) to the exact solution (u, p) of the 3D steady Navier-Stokes equations. Finally, some numerical tests are presented to show the accuracy and effectiveness of the proposed method.
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Feng, Xinlong
Lu, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Lu, Xiaoli
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
机构:
Xinjiang Univ, Coll Math & Syst Sci, Shengli Rd, Urumqi 830046, Xinjiang, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Shengli Rd, Urumqi 830046, Xinjiang, Peoples R China
Feng, Xinlong
Lu, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Changan Univ, Sch Sci, South Second Ring Rd, Xian 710064, Shaanxi, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Shengli Rd, Urumqi 830046, Xinjiang, Peoples R China
Lu, Xiaoli
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Shengli Rd, Urumqi 830046, Xinjiang, Peoples R China
Xi An Jiao Tong Univ, Sch Math & Stat, Xianning West Rd, Xian, Shaanxi, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Shengli Rd, Urumqi 830046, Xinjiang, Peoples R China
机构:
Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R ChinaXi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
Zhang, Tong
Si, Zhiyong
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
Si, Zhiyong
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
机构:
Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Peoples R ChinaHenan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Peoples R China
Ren, Jincheng
Ma, Yue
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450045, Peoples R ChinaHenan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Peoples R China