A Simple Self-Supervised IMU Denoising Method for Inertial Aided Navigation

被引:10
|
作者
Yuan, Kaiwen [1 ]
Wang, Z. Jane [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
关键词
Noise reduction; Task analysis; Supervised learning; Self-supervised learning; Bit error rate; Deep learning; Robot sensing systems; Deep learning methods; AI-Enabled robotics; sensor fusion; self-supervised learning; IMU denoising;
D O I
10.1109/LRA.2023.3234778
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Inertial Measurement Unit (IMU) plays an important role in inertial aided navigation on robots. However, raw IMU data could be noisy, especially for low-cost IMUs, and thus requires efficient pre-processing or denoising before applying further navigation algorithms. Conventional IMU denoising approaches are mostly hand-crafted and may face concerns such as sensor modelling errors and generalization issues. Several recent works leverage deep neural networks (DNNs) to tackle this problem and achieve promising results. However, currently reported deep learning methods are based on supervised learning, requiring sufficient and accurate annotations. While in real-world applications, such annotations can be expensive or unavailable, making these methods not practical. To address the above research gap, we propose incorporating self-supervised learning and future-aware inference for IMU denoising. The end-to-end navigation evaluation results on EuRoC and TUM-VI datasets are promising. The code will be publicly available at https://github.com/KleinYuan/IMUDB.
引用
收藏
页码:944 / 950
页数:7
相关论文
共 50 条
  • [21] Self-supervised learning for effective denoising of flow fields
    Yu, Linqi
    Yousif, Mustafa Z.
    Zhou, Dan
    Zhang, Meng
    Lee, Jung Sub
    Lim, Hee-Chang
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [22] Self-Supervised Pretraining Transformer for Seismic Data Denoising
    Wang, Hongzhou
    Lin, Jun
    Li, Yue
    Dong, Xintong
    Tong, Xunqian
    Lu, Shaoping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 25
  • [23] Self-supervised Signal Denoising for Magnetic Particle Imaging
    Peng, Huiling
    Li, Yimeng
    Yang, Xin
    Tian, Jie
    Hui, Hui
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [24] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [25] Self-Supervised Joint Learning for pCLE Image Denoising
    Yang, Kun
    Zhang, Haojie
    Qiu, Yufei
    Zhai, Tong
    Zhang, Zhiguo
    SENSORS, 2024, 24 (09)
  • [26] Stabilize, Decompose, and Denoise: Self-supervised Fluoroscopy Denoising
    Liu, Ruizhou
    Ma, Qiang
    Cheng, Zhiwei
    Lyu, Yuanyuan
    Wang, Jianji
    Zhou, S. Kevin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 13 - 23
  • [27] Denoising Diffusion Autoencoders are Unified Self-supervised Learners
    Xiang, Weilai
    Yang, Hongyu
    Huang, Di
    Wang, Yunhong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15756 - 15766
  • [28] Self-supervised enhanced denoising diffusion for anomaly detection
    Li, Shu
    Yu, Jiong
    Lu, Yi
    Yang, Guangqi
    Du, Xusheng
    Liu, Su
    INFORMATION SCIENCES, 2024, 669
  • [29] Self-supervised learning for denoising quasiparticle interference data
    Kuijf, Ilse S.
    Tromp, Willem O.
    Benschop, Tjerk
    Ramones, Nino Philip
    Sulangi, Miguel Antonio
    van Nieuwenburg, Evert P. L.
    Allan, Milan P.
    PHYSICAL REVIEW B, 2025, 111 (03)
  • [30] A New Self-supervised Method for Supervised Learning
    Yang, Yuhang
    Ding, Zilin
    Cheng, Xuan
    Wang, Xiaomin
    Liu, Ming
    INTERNATIONAL CONFERENCE ON COMPUTER VISION, APPLICATION, AND DESIGN (CVAD 2021), 2021, 12155