Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification

被引:47
作者
Han, Gang [1 ,2 ,3 ]
Studer, Robin M. [3 ,4 ]
Lee, Moonjoo [3 ]
Rodriguez, Katherine Mizrahi [5 ]
Teesdale, Justin J. [3 ]
Smith, Zachary P. [3 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, 38 Tongyan Rd, Tianjin 300350, Peoples R China
[2] Nankai Univ, Coll Environm Sci & Engn, Tianjin Key Lab Environm Remediat & Pollut Control, 38 Tongyan Rd, Tianjin 300350, Peoples R China
[3] MIT, Dept Chem Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Eidgenoss TH Zurich, Bioand Chem Engn, Vladimir-Prelog-Weg 1-5-10, CH-8093 Zurich, Switzerland
[5] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Polyamide TFN membranes; High selectivity; Metal -organic framework; Interfacial defects; Water purification; REVERSE-OSMOSIS MEMBRANES; METAL-ORGANIC FRAMEWORKS; POLYAMIDE MEMBRANES; WASTE-WATER; COMPOSITE; NANOFILTRATION; DESALINATION; PERFORMANCE; NANOPARTICLES; PERMEABILITY;
D O I
10.1016/j.memsci.2022.121133
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Efficient discrimination of ions and small neutral contaminants remains a challenge for polyamide thin-film nanocomposite (TFN) water separation membranes due to the presence of interfacial defects and particle -agglomeration-induced nonselective voids in the polyamide layer. In this work, highly selective TFN mem-branes were successfully fabricated by leveraging post-synthetic modifications of (3-glycidyloxypropyl)trie-thoxysilane (GPTES) and trimesoyl chloride (TMC) on MIL-101(Cr)-NH2 MOF filler nanoparticles. GPTES modification suppresses particle agglomeration during interfacial polymerization for membrane formation by forming a stable particle suspension in the organic monomer solution, while TMC-induced in situ chemical crosslinking between filler particles and polyamide addresses the phase compatibility and interfacial issues at the filler-polyamide interface. The resulting TFN membranes show high NaCl, MgCl2, Na2SO4, and MgSO4 rejections of 99.0-99.6% at 150 psi with a water permeance of 0.9 L m- 2 h-1 bar-1. Compared to the thin-film composite (TFC) control membrane, the incorporation of the MOF particles yields a 53.0% and 24.5% increase in water permeance and NaCl rejection. Importantly, the TFN membranes also exhibit excellent rejections to small neutral contaminants such as PEG200 (99.2% rejection) and boric acid (89.0% rejection at a pH value of 7.5) at a relatively low pressure of 150 psi, which is higher than the respective value obtained by the commercial Dow SW30XLE TFC control membrane at the same conditions. The outstanding long-term performance stability revealed the robust structure of the MOF TFN membranes. Our results demonstrate a facile strategy to effectively control particle agglomeration and interfacial defects in polyamide TFN membranes by manipulating the surface chemistry of the filler nanoparticles, which can be applied to the fabrication of effective TFN membranes with molecular level size-exclusion selectivity.
引用
收藏
页数:14
相关论文
共 93 条
[1]   Insights into metal-organic frameworks-integrated membranes for desalination process: A review [J].
Abdullah, N. ;
Yusof, N. ;
Ismail, A. F. ;
Lau, W. J. .
DESALINATION, 2021, 500
[2]   Thin film composite membranes embedded with graphene oxide for water desalination [J].
Ali, Mohamed E. A. ;
Wang, Leyi ;
Wang, Xinyan ;
Feng, Xianshe .
DESALINATION, 2016, 386 :67-76
[3]   Finely Tuned Submicroporous Thin-Film Molecular Sieve Membranes for Highly Efficient Fluid Separations [J].
Ali, Zain ;
Ghanem, Bader S. ;
Wang Yingge ;
Pacheco, Federico ;
Ogieglo, Wojciech ;
Vovusha, Hakkim ;
Genduso, Giuseppe ;
Schwingenschlogl, Udo ;
Han Yu ;
Pinnau, Ingo .
ADVANCED MATERIALS, 2020, 32 (22)
[4]   Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles [J].
Aljundi, Isam H. .
DESALINATION, 2017, 420 :12-20
[5]  
Bachman JE, 2016, NAT MATER, V15, P845, DOI [10.1038/nmat4621, 10.1038/NMAT4621]
[6]   Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization [J].
Bao, Mengru ;
Zhu, Guiru ;
Wang, Li ;
Wang, Meng ;
Gao, Congjie .
DESALINATION, 2013, 309 :261-266
[7]   Constructing Scalable Superhydrophobic Membranes for Ultrafast Water-Oil Separation [J].
Cheng, Xi Quan ;
Jiao, Yang ;
Sun, Zekun ;
Yang, Xiaobin ;
Cheng, Zhongjun ;
Bai, Qing ;
Zhang, Yingjie ;
Wang, Kai ;
Shao, Lu .
ACS NANO, 2021, 15 (02) :3500-3508
[8]   Advanced Porous Materials in Mixed Matrix Membranes [J].
Cheng, Youdong ;
Ying, Yunpan ;
Japip, Susilo ;
Jiang, Shu-Dong ;
Chung, Tai-Shung ;
Zhang, Sui ;
Zhao, Dan .
ADVANCED MATERIALS, 2018, 30 (47)
[9]   3D printed polyamide membranes for desalination [J].
Chowdhury, Maqsud R. ;
Steffes, James ;
Huey, Bryan D. ;
McCutcheon, Jeffrey R. .
SCIENCE, 2018, 361 (6403) :682-685
[10]   Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks [J].
Cohen, Seth M. .
CHEMICAL REVIEWS, 2012, 112 (02) :970-1000