An Optimal Control Problem for the Navier-Stokes Equations with Point Sources

被引:3
作者
Fuica, Francisco [1 ]
Lepe, Felipe [2 ]
Otarola, Enrique [1 ]
Quero, Daniel [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Valparaiso, Chile
[2] Univ Bio Bio, Concepcion, Chile
关键词
Optimal control problems; Navier-Stokes equations; Dirac measures; Muckenhoupt weights; First- and second-order optimality conditions; WEIGHTED NORM INEQUALITIES; ELLIPTIC CONTROL-PROBLEMS; ERROR ANALYSIS; APPROXIMATION; REGULARITY; SPACES; COST;
D O I
10.1007/s10957-022-02148-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We analyze, in two dimensions, an optimal control problem for the Navier-Stokes equations where the control variable corresponds to the amplitude of forces modeled as point sources; control constraints are also considered. This particular setting leads to solutions to the state equation exhibiting reduced regularity properties. We operate under the framework of Muckenhoupt weights, Muckenhoupt-weighted Sobolev spaces, and the corresponding weighted norm inequalities and derive the existence of optimal solutions and first- and, necessary and sufficient, second-order optimality conditions.
引用
收藏
页码:590 / 616
页数:27
相关论文
共 33 条
[1]   Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights [J].
Aimar, H. ;
Carena, M. ;
Duran, R. ;
Toschi, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 143 (01) :119-137
[2]   AN A POSTERIORI ERROR ANALYSIS FOR AN OPTIMAL CONTROL PROBLEM WITH POINT SOURCES [J].
Allendes, Alejandro ;
Otarola, Enrique ;
Rankin, Richard ;
Salgado, Abner J. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (05) :1617-1650
[3]  
[Anonymous], 2003, Linear and Nonlinear Programming
[4]  
[Anonymous], 2015, Jahresber. Dtsch. Math.-Ver., DOI DOI 10.1365/S13291-014-0109-3
[5]   Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems [J].
Antil, Harbir ;
Otarola, Enrique ;
Salgado, Abner J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) :852-883
[6]  
Atkinson Kendall., 2005, Texts in Applied Mathematics, V39
[7]   Finite element methods in local active control of sound [J].
Bermúdez, A ;
Gamallo, P ;
Rodríguez, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :437-465
[8]  
Brezis Haim, 2010, Functional Analysis, Sobolev Spaces and Partial Differential Equations
[9]   Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations [J].
Casas, Eduardo ;
Mateos, Mariano ;
Raymond, Jean-Pierre .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) :952-982
[10]   OPTIMAL CONTROL OF THE TWO-DIMENSIONAL STATIONARY NAVIER-STOKES EQUATIONS WITH MEASURE VALUED CONTROLS [J].
Casas, Eduardo ;
Kunisch, Karl .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (02) :1328-1354