A multi-parametric machine learning approach using authentication trees for the healthcare industry

被引:4
|
作者
Abunadi, Ibrahim [1 ]
Rehman, Amjad [1 ]
Haseeb, Khalid [1 ,2 ]
Alam, Teg [3 ,4 ]
Jeon, Gwanggil [1 ,5 ,6 ,7 ]
机构
[1] CCIS Prince Sultan Univ, Artificial Intelligence & Data Analyt Lab AIDA, Riyadh, Saudi Arabia
[2] Islamia Coll Peshawar, Dept Comp Sci, Peshawar, Pakistan
[3] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Dept Ind Engn, Al Kharj, Saudi Arabia
[4] Azad Inst Engn & Technol, Azad puram,Chandrawal via Bangla Bazar & Bijnour,N, Lucknow, India
[5] Incheon Natl Univ, Dept Embedded Syst Engn, Incheon, South Korea
[6] CCIS Prince Sultan Univ, Incheon, South Korea
[7] Incheon Natl Univ, Incheon, South Korea
关键词
data distribution; health risks; healthcare industry; internet of things; machine learning; multi-parametric analysis; security; INTERNET; MODEL;
D O I
10.1111/exsy.13202
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Internet of Health Things (IoHT) has grown in importance for developing medical applications with the support of wireless communication systems. IoHT is integrated with many sensors to capture the patients' records and transmits them to hospital centres for analysis and reporting. Controlling and managing health records has been addressed in several ways, however, it is noted that two key research problems for vital communication systems are reliability and reducing data loss. To enhance the sustainability of health applications and effectively use the network infrastructure when transferring sensitive data, this research provides a machine learning approach. Moreover, data collected from the IoHTs are protected and can be securely received for physical process in hospitals using authentication trees. Firstly, the undirected graphs are explored based on the multi-parametric machine learning approach to minimize the computation overheads and traffic congestion. Secondly, it evaluates the nodes' level behaviour over the heterogeneous traffic load with efficient identification of redundant links. Finally, in-depth analysis and simulation results have shown that the proposed protocol is more effective than existing approaches for data accuracy and security analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges
    An, Qi
    Rahman, Saifur
    Zhou, Jingwen
    Kang, James Jin
    SENSORS, 2023, 23 (09)
  • [32] A Novel Machine Learning-Based Approach for Outlier Detection in Smart Healthcare Sensor Clouds
    Dwivedi, Rajendra Kumar
    Kumar, Rakesh
    Buyya, Rajkumar
    INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2021, 16 (04)
  • [33] Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics
    Castillo T., Jose M. M.
    Arif, Muhammad
    Starmans, Martijn P. A.
    Niessen, Wiro J.
    Bangma, Chris H.
    Schoots, Ivo G.
    Veenland, Jifke F.
    CANCERS, 2022, 14 (01)
  • [34] Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma
    Nakagawa, Masataka
    Nakaura, Takeshi
    Namimoto, Tomohiro
    Kitajima, Mika
    Uetani, Hiroyuki
    Tateishi, Machiko
    Oda, Seitaro
    Utsunomiya, Daisuke
    Makino, Keishi
    Nakamura, Hideo
    Mukasa, Akitake
    Hirai, Toshinori
    Yamashita, Yasuyuki
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 108 : 147 - 154
  • [35] Automated segmentation of pediatric brain tumors based on multi-parametric MRI and deep learning
    Madhogarhia, Rachel
    Kazerooni, Anahita Fathi
    Arif, Sherjeel
    Ware, Jeffrey B.
    Familiar, Ariana M.
    Vidal, Lorenna
    Bagheri, Sina
    Anderson, Hannah
    Haldar, Debanjan
    Yagoda, Sophie
    Graves, Erin
    Spadola, Michael
    Yan, Rachel
    Dahmane, Nadia
    Sako, Chiharu
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Nabavizadeh, Ali
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [36] Multi-parametric analysis of phagocyte antimicrobial responses using imaging flow cytometry
    Hayixbeck, Jeffrey J.
    Wong, Michael E.
    Bayona, Juan A. More
    Barreda, Daniel R.
    JOURNAL OF IMMUNOLOGICAL METHODS, 2015, 423 : 85 - 92
  • [37] Assessment of the classification abilities of the CNS multi-parametric optimization approach by the method of logistic regression
    Raevsky, O. A.
    Polianczyk, D. E.
    Mukhametov, A.
    Grigorev, V. Y.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2016, 27 (08) : 629 - 635
  • [38] A Machine Learning Framework for Biometric Authentication Using Electrocardiogram
    Kim, Song-Kyoo
    Yeun, Chan Yeob
    Damiani, Ernesto
    Lo, Nai-Wei
    IEEE ACCESS, 2019, 7 : 94858 - 94868
  • [39] Heterogenous ensemble learning driven multi-parametric assessment model for hardware Trojan detection
    Lavanya, T.
    Rajalakshmi, K.
    INTEGRATION-THE VLSI JOURNAL, 2023, 89 : 217 - 228
  • [40] Prediction of heat transfer value in the automotive industry with an approach based on internet of things and machine learning
    Nalkiran, Makbule
    Altuntas, Serkan
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2025, 40 (02): : 937 - 950