Multi-channel data fusion and intelligent fault diagnosis based on deep learning

被引:10
|
作者
Guo, Yiming [1 ]
Hu, Tao [2 ]
Zhou, Yifan [2 ]
Zhao, Kunkun [2 ]
Zhang, Zhisheng [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[2] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
基金
日本学术振兴会;
关键词
multi-channel data; fault diagnosis; convolutional neural network; two-scale feature extraction; CONVOLUTIONAL NEURAL-NETWORK; FEATURE-EXTRACTION METHOD; PCA;
D O I
10.1088/1361-6501/ac8a64
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In complex manufacturing systems, multi-channel sensor data are usually recorded for fault detection and diagnosis. Most existing multi-channel data processing methods adopt tensor analysis technology, which cannot effectively describe the temporal and spatial structures of the multi-channel data. The obstacles in multi-channel data analysis are the temporal correlation between the time-series data of the single-channel and the spatial correlation between different channels. In this paper, a novel deep convolutional neural network model is proposed for multi-channel data fusion and intelligent fault diagnosis. First, features of the multi-channel data are extracted from two scales. The extracted features are then fused through a multi-layer neural network. Finally, a classifier of fault modes is established by using the improved Softmax function. The fault diagnosis performance of the proposed model is evaluated and compared with other common methods in both the simulation studies and real-world case studies. Results show that the proposed methodology has superior fault diagnosis performance for multi-channel data.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [22] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [23] Fault diagnosis based on fusion of multi-channel observations by sensors with independent component analysis and mutual information
    Qian, SX
    Yang, SX
    Gu, XJ
    Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005, Vols 1 and 2, 2005, : 424 - 428
  • [24] The intelligent fault identification method based on multi-source information fusion and deep learning
    Guo, Dashu
    Yang, Xiaoshuang
    Peng, Peng
    Zhu, Lei
    He, Handong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [25] Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion
    Wang, Nan
    Yang, Fan
    Zhang, Ridong
    Gao, Furong
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 7121 - 7135
  • [26] Deep Learning Based Intelligent Industrial Fault Diagnosis Model
    Surendran, R.
    Khalaf, Osamah Ibrahim
    Romero, Carlos Andres Tavera
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 6323 - 6338
  • [27] Deep Learning for Fault Diagnosis Based on Multi-sourced Heterogeneous Data
    Ma, Yan
    Guo, Zhihong
    Su, Jianjun
    Chen, Yufeng
    Du, Xiuming
    Yang, Yi
    Li, Chengqi
    Lin, Ying
    Geng, Yujie
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014,
  • [28] Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles
    Huihui Pan
    Weichao Sun
    Qiming Sun
    Huijun Gao
    Chinese Journal of Mechanical Engineering, 2021, 34
  • [29] Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles
    Pan, Huihui
    Sun, Weichao
    Sun, Qiming
    Gao, Huijun
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2021, 34 (01)
  • [30] Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles
    Huihui Pan
    Weichao Sun
    Qiming Sun
    Huijun Gao
    Chinese Journal of Mechanical Engineering, 2021, 34 (03) : 171 - 181