Integration of Physics- and Data-Driven Power System Models in Transient Analysis After Major Disturbances

被引:5
作者
Saric, Aleksandar A. [1 ]
Transtrum, Mark K. [2 ]
Saric, Andrija T. [3 ]
Stankovic, Aleksandar M. [1 ]
机构
[1] Tufts Univ, Dept Elect Engn & Comp Sci, Medford, MA 02155 USA
[2] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
[3] Univ Novi Sad, Fac Tech Sci, Dept Power Elect & Commun Engn, Novi Sad 21102, Serbia
来源
IEEE SYSTEMS JOURNAL | 2023年 / 17卷 / 01期
基金
美国国家科学基金会;
关键词
Mathematical models; Data models; Power system dynamics; Computational modeling; Predictive models; Extraterrestrial measurements; Transient analysis; Compressed sensing; deep learning; dynamic model; Koopman modes; neural network; nonlinear dynamics; power system; system identification; STABILITY ASSESSMENT; IDENTIFICATION; DECOMPOSITION; REDUCTION; FLOW;
D O I
10.1109/JSYST.2022.3150237
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The article explores the analysis of transient phenomena in large-scale power systems subjected to major disturbances from the aspect of interleaving, coordinating, and refining physics- and data-driven models. Major disturbances can lead to cascading failures and ultimately to the partial power system blackout. Our primary interest is in a framework that would enable coordinated and seamlessly integrated use of the two types of models in engineered systems. Parts of this framework include: 1) optimized compressed sensing, 2) customized finite-dimensional approximations of the Koopman operator, and 3) gray-box integration of physics-driven (equation-based) and data-driven (deep neural network-based) models. The proposed three-stage procedure is applied to the transient stability analysis on the multimachine benchmark example of a 441-bus real-world test system, where the results are shown for a synchronous generator with local measurements in the connection point.
引用
收藏
页码:479 / 490
页数:12
相关论文
共 39 条
  • [1] A Library of Second-Order Models for Synchronous Machines
    Ajala, Olaoluwapo
    Dominguez-Garcia, Alejandro
    Sauer, Peter
    Liberzon, Daniel
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (06) : 4803 - 4814
  • [2] [Anonymous], 2019, TOP0101I NERC
  • [3] Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator
    Arbabi, Hassan
    Mezic, Igor
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (04): : 2096 - 2126
  • [4] Brunton S. L., 2015, J COMPUT DYNAM, V2, P165, DOI DOI 10.3934/JCD.2015002
  • [5] Brunton S. L., 2019, DATA DRIVEN SCI ENG
  • [6] Discovering governing equations from data by sparse identification of nonlinear dynamical systems
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) : 3932 - 3937
  • [7] Candes E.J., 2005, 1 MAGIC RECOVERY SPA
  • [8] Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
    Chen, Kevin K.
    Tu, Jonathan H.
    Rowley, Clarence W.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (06) : 887 - 915
  • [9] The Optimal Hard Threshold for Singular Values is 4/√3
    Gavish, Matan
    Donoho, David L.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (08) : 5040 - 5053
  • [10] Local and Wide-Area PMU-Based Decentralized Dynamic State Estimation in Multi-Machine Power Systems
    Ghahremani, Esmaeil
    Kamwa, Innocent
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) : 547 - 562