Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

被引:41
作者
Cao, Xuheng [1 ]
Lian, Yusheng [1 ]
Wang, Kaixuan [1 ]
Ma, Chao [1 ]
Xu, Xianqing [1 ]
机构
[1] Beijing Inst Graph Commun, Sch Printing & Packaging Engn, Beijing 102600, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Degradation; Transformers; Spatial resolution; Imaging; Tensors; Spectral analysis; Hyperspectral imaging; Blind fusion; degradation representation; feature fusion; superresolution; unsupervised transformer; SPARSE; SUPERRESOLUTION; FACTORIZATION;
D O I
10.1109/TGRS.2024.3359232
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fusing a low spatial resolution hyperspectral image (LR-HIS) with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This article proposes an unsupervised hybrid network of transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multilevel spatio-spectral correlation between the desired HR-HSI and the observed images, we design a multilevel cross-feature attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without preknown degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 53 条
[1]   HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1757-1767
[2]   Hyperspectral image super-resolution via spectral matching and correction [J].
Cao, Xuheng ;
Lian, Yusheng ;
Liu, Zilong ;
Wu, Jiahui ;
Zhang, Wan ;
Liu, Jianghao .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2023, 40 (08) :1635-1643
[3]   Universal high spatial resolution hyperspectral imaging using hybrid-resolution image fusion [J].
Cao, Xuheng ;
Lian, Yusheng ;
Liu, Zilong ;
Zhou, Han ;
Wang, Bin ;
Hunag, Beiqing ;
Zhang, Wan .
OPTICAL ENGINEERING, 2023, 62 (03)
[4]   Hyperspectral image super-resolution via a multi-stage scheme without employing spatial degradation [J].
Cao, Xuheng ;
Lian, Yusheng ;
Liu, Zilong ;
Zhou, Han ;
Bin, Wang ;
Zhang, Wan ;
Huang, Beiqing .
OPTICS LETTERS, 2022, 47 (19) :5184-5187
[5]   Hyperspectral image super-resolution based on the transfer of both spectra and multi-level features [J].
Cao, Xuheng ;
Lian, Yusheng ;
Liu, Zilong ;
Zhou, Han ;
Hu, Xiangmei ;
Huang, Beiqing ;
Zhang, Wan .
OPTICS LETTERS, 2022, 47 (14) :3431-3434
[6]   Iterative SpectralSpatial Hyperspectral Anomaly Detection [J].
Chang, Chein-I ;
Lin, Chien-Yu ;
Chung, Pau-Choo ;
Hu, Peter Fuming .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[7]   Hyperspectral and Multispectral Image Fusion Using Factor Smoothed Tensor Ring Decomposition [J].
Chen, Yong ;
Zeng, Jinshan ;
He, Wei ;
Zhao, Xi-Le ;
Huang, Ting-Zhu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]   Exploiting Spectral and Spatial Information in Hyperspectral Urban Data With High Resolution [J].
Dell'Acqua, F. ;
Gamba, P. ;
Ferrari, A. ;
Palmason, J. A. ;
Benediktsson, J. A. ;
Arnason, K. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (04) :322-326
[9]   PSRT: Pyramid Shuffle-and-Reshuffle Transformer for Multispectral and Hyperspectral Image Fusion [J].
Deng, Shang-Qi ;
Deng, Liang-Jian ;
Wu, Xiao ;
Ran, Ran ;
Hong, Danfeng ;
Vivone, Gemine .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[10]   Nonlocal Sparse Tensor Factorization for Semiblind Hyperspectral and Multispectral Image Fusion [J].
Dian, Renwei ;
Li, Shutao ;
Fang, Leyuan ;
Lu, Ting ;
Bioucas-Dias, Jose M. .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (10) :4469-4480