Existence and blow-up of solutions for a class of semilinear pseudo-parabolic equations with cone degenerate viscoelastic term

被引:0
作者
Liu, Hang [1 ]
Tian, Shuying [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Math, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Semilinear pseudo-parabolic equation; Cone degenerate viscoelastic term; Asymptotic behavior; Bounds for the blow-up time;
D O I
10.1007/s11868-023-00585-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the semilinear pseudo-parabolic equation with cone degenerate viscoelastic term ut+Delta B2ut+Delta B2u-integral 0tg(t-s)Delta B2u(s)ds=f(u),inintBx(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t+\Delta _{\mathbb B}<^>{2} u_t+\Delta _{\mathbb B}<^>{2}u-\int _0<^>t g(t-s)\Delta _{\mathbb B}<^>{2}u(s)ds=f(u),\ \text{ in } \text{ int }\mathbb B\times (0,T), \end{aligned}$$\end{document}with initial and boundary conditions, where f(u)=|u|p-2u-1|B|integral B|u|p-2udx1x1dx '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=|u|<^>{p-2}u-\frac{1}{|\mathbb B|}\displaystyle \int _{\mathbb B}|u|<^>{p-2}u\frac{dx_1}{x_1}dx'$$\end{document}. We construct several conditions for initial data which leads to global existence of the solutions or the solutions blowing up in finite time. Moreover, the asymptotic behavior and the bounds of blow-up time for the solutions are given.
引用
收藏
页数:19
相关论文
共 12 条
[1]   Blow up property for viscoelastic evolution equations on manifolds with conical degeneration [J].
Alimohammady, Mohsen ;
Kalleji, Morteza Koozehgar .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01)
[2]   Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity [J].
Chen, Hua ;
Tian, Shuying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) :4424-4442
[3]   Global existence and nonexistence for semilinear parabolic equations with conical degeneration [J].
Chen, Hua ;
Liu, Gongwei .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (03) :329-349
[4]   Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities [J].
Chen, Hua ;
Liu, Xiaochun ;
Wei, Yawei .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 43 (3-4) :463-484
[5]   Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents [J].
Chen, Hua ;
Liu, Xiaochun ;
Wei, Yawei .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (01) :27-43
[6]   Cosmic F- and D-strings [J].
Copeland, EJ ;
Myers, RC ;
Polchinski, J .
JOURNAL OF HIGH ENERGY PHYSICS, 2004, (06) :327-350
[7]   Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration [J].
Di, Huafei ;
Shang, Yadong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) :4566-4597
[8]  
Gambini R., 2014, J. Phys: Conf. Ser, V189
[9]  
Kozlov V.A., 1997, MATH SURVEYS MONOGRA, V52
[10]  
LEVINE HA, 1973, ARCH RATION MECH AN, V51, P371