Regularized nonlinear regression with dependent errors and its application to a biomechanical model

被引:1
作者
You, Hojun [1 ]
Yoon, Kyubaek [2 ]
Wu, Wei-Ying [3 ]
Choi, Jongeun [2 ]
Lim, Chae Young [4 ]
机构
[1] Univ Houston, Dept Math, Philip Guthrie Hoffman Hall 3551 Cullen Blvd, Houston, TX 77204 USA
[2] Yonsei Univ, Sch Mech Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[3] Natl Dong Hwa Univ, Dept Appl Math, 1 Sect 2,Daxue Rd, Shoufeng 974, Hualien, Taiwan
[4] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Nonlinear regression; Temporal dependence; Multiplicative error; Local consistency and oracle property; LEAST-SQUARES ESTIMATION; VARIABLE SELECTION; PARAMETER-ESTIMATION; TIME-SERIES; ESTIMATORS; LIKELIHOOD;
D O I
10.1007/s10463-023-00895-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A biomechanical model often requires parameter estimation and selection in a known but complicated nonlinear function. Motivated by observing that the data from a head-neck position tracking system, one of biomechanical models, show multiplicative time-dependent errors, we develop a modified penalized weighted least squares estimator. The proposed method can be also applied to a model with possible non-zero mean time-dependent additive errors. Asymptotic properties of the proposed estimator are investigated under mild conditions on a weight matrix and the error process. A simulation study demonstrates that the proposed estimation works well in both parameter estimation and selection with time-dependent error. The analysis and comparison with an existing method for head-neck position tracking data show better performance of the proposed method in terms of the variance accounted for.
引用
收藏
页码:481 / 510
页数:30
相关论文
共 50 条
  • [31] Asymptotic expansion for nonparametric M-estimator in a nonlinear regression model with long-memory errors
    Chen, Jia
    Li, Degui
    Lin, Zhengyan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (09) : 3035 - 3046
  • [32] Nonparametric regression for dependent data in the errors-in-variables problem
    Honda, Toshio
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3409 - 3424
  • [33] Moderate deviations for the mildly stationary autoregressive model with dependent errors
    Jiang, Hui
    Yang, Guangyu
    Yu, Mingming
    STATISTICS, 2023, 57 (06) : 1317 - 1351
  • [34] GA-BP neural network-based nonlinear regression model for machining errors of compressor blades
    Fan, Lingsong
    Ren, Yubin
    Tan, Miaolong
    Wu, Baohai
    Gao, Limin
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 151
  • [35] Asymptotics of estimates in constrained nonlinear regression with long-range dependent innovations
    Wang, LH
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (02) : 251 - 264
  • [36] Adaptive hypergraph regularized logistic regression model for bioinformatic selection and classification
    Jin, Yong
    Hou, Huaibin
    Qin, Mian
    Yang, Wei
    Zhang, Zhen
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2349 - 2360
  • [37] A connected network-regularized logistic regression model for feature selection
    Li, Lingyu
    Liu, Zhi-Ping
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11672 - 11702
  • [38] Asymptotics of estimates in constrained nonlinear regression with long-range dependent innovations
    Lihong Wang
    Annals of the Institute of Statistical Mathematics, 2004, 56 : 251 - 264
  • [39] New Prediction Interval and Band in the Nonlinear Regression Model: Application to Predictive Modeling in Foods
    Gauchi, Jean-Pierre
    Vila, Jean-Pierre
    Coroller, Louis
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (02) : 322 - 334
  • [40] Lasso regression in sparse linear model with φ-mixing errors
    Peng, Ling
    Zhu, Yan
    Zhong, Wenxuan
    METRIKA, 2023, 86 (01) : 1 - 26