A comparison principle for a doubly singular quasilinear anisotropic problem

被引:0
|
作者
Montoro, Luigi [1 ]
Sciunzi, Berardino [1 ]
Trombetta, Alessandro [1 ]
机构
[1] UNICAL, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
关键词
Comparison principle; Finsler anisotropic operator; Picone identity; REGULARITY;
D O I
10.1142/S0219199723500608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a comparison principle for sub-supersolutions to a singular quasilinear problem that involves the anisotropic Finsler operator -Delta(H )(p)u := -div(Hp-1(del u) del H(del u)). As a main consequence, we obtain a uniqueness result for weak solutions to the problem (P). The proof is carried out also proving a sharp regularity result of the solutions up to the boundary. Our results are new even in the euclidean case.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] EXISTENCE AND UNIQUENESS FOR ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS INVOLVING SINGULAR NONLINEARITIES
    Esposito, Francesco
    Sciunzi, Berardino
    Trombetta, Alessandro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (06) : 1628 - 1646
  • [42] An indefinite quasilinear elliptic problem with weights in anisotropic spaces
    Abreu, Emerson
    Felix, Diego
    Medeiros, Everaldo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 293 : 418 - 446
  • [43] On critical singular quasilinear elliptic problem when n = p
    Yao, YX
    Shen, YT
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) : 209 - 219
  • [44] Dynamical behavior of solutions of a quasilinear nonlocal singular parabolic problem
    Ackleh, AS
    Ke, L
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 2000, 7 (01): : 123 - 144
  • [45] ON CRITICAL SINGULAR QUASILINEAR ELLIPTIC PROBLEM WHEN n=p
    姚仰新
    沈尧天
    Acta Mathematica Scientia, 2006, (02) : 209 - 219
  • [46] Multiplicity for a strongly singular quasilinear problem via bifurcation theory
    Giacomoni, Jacques
    Dos Santos, Lais Moreira
    Santos, Carlos Alberto
    BULLETIN OF MATHEMATICAL SCIENCES, 2023, 13 (01)
  • [47] Global structure of positive solutions for a singular quasilinear elliptic problem
    Ma, Ruyun
    Yang, Lijuan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (02) : 199 - 212
  • [48] On a class of critical singular quasilinear elliptic problem with indefinite weights
    Zhang, Guoqing
    Man, Shoudong
    Zhang, Weiguo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) : 4771 - 4784
  • [49] EXISTENCE OF POSITIVE SOLUTIONS TO A QUASILINEAR ELLIPTIC SINGULAR NEUMANN PROBLEM
    Miao, Qing
    Yang, Zuodong
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (02): : 235 - 246
  • [50] The boundary value problem for quasilinear degenerate and singular elliptic systems
    Chen, Zu-Chi
    Wang, Quan-Zhen
    Li, Du
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) : 2962 - 2979