Semi-Asynchronous Model Design for Federated Learning in Mobile Edge Networks

被引:3
|
作者
Zhang, Jinfeng [1 ]
Liu, Wei [1 ]
He, Yejun [1 ]
He, Zhou [2 ]
Guizani, Mohsen [3 ]
机构
[1] Shenzhen Univ, Guangdong Engn Res Ctr Base Stn Antennas, State Key Lab Radio Frequency Heterogeneous Integr, Coll Elect & Informat Engn,Shenzhen Key Lab Antenn, Shenzhen, Peoples R China
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[3] Mohamed Bin Zayed Univ Artificial Intelligence MBZ, Abu Dhabi 51133, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Federated learning; mobile edge networks; deep deterministic policy gradient; semi-asynchronous update model; energy efficiency;
D O I
10.1109/TVT.2023.3298787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) is a distributed machine learning (ML). Distributed clients train locally and exclusively need to upload the model parameters to learn the global model collaboratively under the coordination of the aggregation server. Although the privacy of the clients is protected, which requires multiple rounds of data upload between the clients and the server to ensure the accuracy of the global model. Inevitably, this results in latency and energy consumption issues due to limited communication resources. Therefore, mobile edge computing (MEC) has been proposed to solve communication delays and energy consumption in federated learning. In this paper, we first analyze how to select the gradient values that help the global model converge quickly and establish theoretical analysis about the relationship between the convergence rate and the gradient direction. To efficiently reduce the energy consumption of clients during training, on the premise of ensuring the local training accuracy and the convergence rate of the global model, we adopt the deep deterministic policy gradient (DDPG) algorithm, which adaptively allocates resources according to different clients' requests to minimize the energy consumption. To improve flexibility and scalability, we propose a new the semi-asynchronous federated update model, which allows clients to aggregate asynchronously on the server, and accelerates the convergence rate of the global model. Empirical results show that the proposed Algorithm $\mathbf {1}$ not only accelerates the convergence speed of the global model, but also reduces the size of parameters that need to be uploaded. Besides, the proposed Algorithm $\mathbf {2}$ reduces the time difference caused by user heterogeneity. Eventually, the semi-asynchronous update model is better than the synchronous update model in communication time.
引用
收藏
页码:16280 / 16292
页数:13
相关论文
共 50 条
  • [21] A Semi-Asynchronous Decentralized Federated Learning Framework via Tree-Graph Blockchain
    Zhang, Cheng
    Xu, Yang
    Wu, Xiaowei
    Wang, En
    Jiang, Hongbo
    Zhang, Yaoxue
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2024, : 1121 - 1130
  • [22] AoU-Based Local Update and User Scheduling for Semi-Asynchronous Online Federated Learning in Wireless Networks
    Zheng, Jianing
    Liu, Xiaolan
    Ling, Zhuang
    Hu, Fengye
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29673 - 29688
  • [23] Semi-asynchronous personalized federated learning for short-term photovoltaic power forecasting
    Weishan Zhang
    Xiao Chen
    Ke He
    Leiming Chen
    Liang Xu
    Xiao Wang
    Su Yang
    Digital Communications and Networks, 2023, 9 (05) : 1221 - 1229
  • [24] Semi-asynchronous personalized federated learning for short-term photovoltaic power forecasting
    Zhang, Weishan
    Chen, Xiao
    He, Ke
    Chen, Leiming
    Xu, Liang
    Wang, Xiao
    Yang, Su
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (05) : 1221 - 1229
  • [25] Energy-Efficient Dynamic Asynchronous Federated Learning in Mobile Edge Computing Networks
    Xu, Guozeng
    Li, Xiuhua
    Li, Hui
    Fan, Qilin
    Wang, Xiaofei
    Leung, Victor C. M.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 160 - 165
  • [26] DSA: Distributed Semi-Asynchronous Sleep Scheduling Protocol for Mobile Wireless Networks
    Choi, Bong Jun
    Shen, Xuemin
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [27] Semi-Synchronous Personalized Federated Learning Over Mobile Edge Networks
    You, Chaoqun
    Feng, Daquan
    Guo, Kun
    Yang, Howard H.
    Feng, Chenyuan
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2262 - 2277
  • [28] Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach
    Chen, Shuai
    Wang, Xiumin
    Zhou, Pan
    Wu, Weiwei
    Lin, Weiwei
    Wang, Zhenyu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1113 - 1124
  • [29] POSTER: A Semi-asynchronous Federated Intrusion Detection Framework for Power Systems
    Husnoo, Muhammad Akbar
    Anwar, Adnan
    Reda, Haftu Tasew
    Hosseinzadeh, Nasser
    PROCEEDINGS OF THE 2023 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, ASIA CCS 2023, 2023, : 1019 - 1021
  • [30] HFSA: A Semi-Asynchronous Hierarchical Federated Recommendation System in Smart City
    Li, Youhuizi
    Yu, Haitao
    Zeng, Yan
    Pan, Qianqian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (21) : 18808 - 18820