Electrochemical behavior of zinc in alkali-activated fly ash solution

被引:5
|
作者
Li, Wenxuan [1 ]
Guan, Xiangdong [1 ]
Shi, Jinjie [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Construction Mat, Nanjing 211189, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Galvanized steel; Zinc; Alkali-activated fly ash; Concrete pore solution; Passive film; Chloride attack; CONCRETE PORE SOLUTION; GALVANIZED STEEL; CORROSION BEHAVIOR; PASSIVE FILM; REINFORCING STEEL; MILD-STEEL; CHLORIDE; STRENGTH; DEPASSIVATION; INHIBITION;
D O I
10.1016/j.cemconcomp.2023.105395
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To study the passivation process and chloride-induced corrosion mechanism of galvanized steel in alkaliactivated fly ash (AAFA) solution, pure zinc was chosen as the working electrode. Moreover, two other simulated concrete pore solutions, e.g., saturated Ca(OH)2 solution and ordinary Portland cement (OPC) solution were also tested for comparative purposes. Based on various electrochemical measurements and surface characterization techniques, the passivation capability and the chloride-induced corrosion behavior of zinc and its critical chloride concentration were investigated. Although no calcium hydroxyzincate (CHZ) was formed for zinc in AAFA solution due to the lack of sufficient calcium ion, a zeolite-like adsorption layer as well as a silicate gel adsorption layer could be formed on the zinc surface. Accordingly, compared with the other alkaline solutions, enhanced corrosion resistance was evident for zinc in AAFA solution even in the presence of high chloride concentration. These findings of this study serve as the first step towards enhancing our understanding of the possible application of galvanized steel in alkali-activated materials exposed to harsh marine environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [32] Curing Conditions of Alkali-Activated Fly Ash and Slag Mortar
    Dong, Minhao
    Elchalakani, Mohamed
    Karrech, Ali
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (06)
  • [33] Pressure-Induced Geopolymerization in Alkali-Activated Fly Ash
    Park, Sol Moi
    Khalid, Hammad Raza
    Seo, Joon Ho
    Yoon, Hyun No
    Son, Hyeong Min
    Kim, Seon Hyeok
    Lee, Nam Kon
    Lee, Haeng Ki
    Jang, Jeong Gook
    SUSTAINABILITY, 2018, 10 (10)
  • [34] Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes
    Yang, Tao
    Zhu, Huajun
    Zhang, Zuhua
    Gao, Xuan
    Zhang, Changsen
    Wu, Qisheng
    CEMENT AND CONCRETE RESEARCH, 2018, 109 : 198 - 207
  • [35] Blended alkali-activated fly ash/brick powder materials
    Rovnanik, Pavel
    Reznik, Bohuslav
    Rovnanikova, Pavla
    ECOLOGY AND NEW BUILDING MATERIALS AND PRODUCTS 2016, 2016, 151 : 108 - 113
  • [36] Magnesia Modification of Alkali-Activated Slag Fly Ash Cement
    Shen Weiguo
    Wang Yiheng
    Zhang Tao
    Zhou Mingkai
    Li Jiasheng
    Cui Xiaoyu
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (01): : 121 - 125
  • [37] Mechanical and microstructural properties of alkali-activated fly ash geopolymers
    Komljenovic, M.
    Bascarevic, Z.
    Bradic, V.
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 181 (1-3) : 35 - 42
  • [38] ALKALI-ACTIVATED FLY ASH CONCRETE (CONCRETE WITHOUT CEMENT)
    Mikoc, Miroslav
    Bjelobrk, Ivan
    Korajac, Josip
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2011, 18 (01): : 99 - 102
  • [39] Inhibition Mechanism of Sodium Citrate on Reinforcing Steel in Extracted Alkali-Activated Fly Ash Solution
    Zhou X.
    Li M.
    Shi J.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (02): : 603 - 613
  • [40] Effect of Fly Ash, MgO and Curing Solution on the Chemical Shrinkage of Alkali-Activated Slag Cement
    Fang, Yonghao
    Gu, Yamin
    Kang, Qiuboa
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 168-170 : 2008 - 2012