Robust Nonlinear Control of a Wind Turbine with a Permanent Magnet Synchronous Generator

被引:1
作者
Lua, Cuauhtemoc Acosta [1 ,2 ]
Bianchi, Domenico [2 ,3 ]
Baragano, Salvador Martin [2 ,3 ]
Di Ferdinando, Mario [2 ,3 ]
Di Gennaro, Stefano [2 ,3 ]
机构
[1] Ctr Univ Cienega, Univ Guadalajara, Ave Univ 1115, Ocotlan 47820, Jalisco, Mexico
[2] Univ Aquila, Ctr Excellence DEWS, Via Vetoio, I-67100 Laquila, Italy
[3] Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio, I-67100 Laquila, Italy
关键词
wind turbine; nonlinear control; parameter variations; high-order sliding mode; SLIDING-MODE CONTROL; SYSTEMS; OBSERVER; DESIGN; PERFORMANCE;
D O I
10.3390/en16186649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper addresses the design of a robust nonlinear dynamic controller for a wind turbine. The turbine is equipped with a permanent magnet synchronous generator. The control problem involves tracking a suitable reference value for the turbine's angular velocity, which corresponds to the wind speed. This issue is tackled by compensating for variations in the electrical and mechanical parameters present in the mathematical model. Additionally, the problem is approached under the assumption that wind speed cannot be directly measured, a fact verified in practical scenarios. This situation is particularly relevant for real-world applications, where only nominal parameter values are accessible and accurate wind speed measurement is challenging due to disturbances caused by the turbine or other factors, despite the use of appropriate sensors. To achieve precise tracking of the angular velocity reference, effective compensation of perturbation terms arising from parameter uncertainties and errors in wind estimation becomes crucial. To address this problem, a wind velocity estimator is employed in conjunction with high-order sliding mode parameter estimators, ensuring the turbine's operation attains a high level of performance.
引用
收藏
页数:19
相关论文
共 52 条
[41]   Integral Sliding Mode Control: Performance, Modification, and Improvement [J].
Pan, Yongping ;
Yang, Chenguang ;
Pan, Lin ;
Yu, Haoyong .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (07) :3087-3096
[42]   Closing Gaps for Aircraft Attitude Higher Order Sliding Mode Control Certification via Practical Stability Margins Identification [J].
Panathula, Chandrasekhara Bharath ;
Rosales, Antonio ;
Shtessel, Yuri B. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (06) :2020-2034
[43]   Robust Control of a PMSG-Based Wind Turbine Generator Using Lyapunov Function [J].
Pourebrahim, Roghayyeh ;
Shotorbani, Amin Mohammadpour ;
Marquez, Fausto Pedro Garcia ;
Tohidi, Sajjad ;
Mohammadi-Ivatloo, Behnam .
ENERGIES, 2021, 14 (06)
[44]   Backstepping sliding mode control of a variable speed wind turbine for power optimization [J].
Rajendran, Saravanakumar ;
Jena, Debashisha .
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2015, 3 (03) :402-410
[45]  
Siegfried Heier, 1998, Grid integration of wind energy conversion systems
[46]  
Utkin V.I., 1992, SLIDING MODES CONTRO
[47]   High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator [J].
Valenciaga, F. ;
Puleston, P. F. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2008, 23 (03) :860-867
[48]   An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer [J].
Van, Mien .
ISA TRANSACTIONS, 2019, 90 :30-40
[49]   Robust sliding-mode control of Wind energy conversion systems for optimal power extraction via nonlinear perturbation observers [J].
Yang, Bo ;
Yu, Tao ;
Shu, Hongchun ;
Dong, Jun ;
Jiang, Lin .
APPLIED ENERGY, 2018, 210 :711-723
[50]   Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system [J].
Zaragoza, Jordi ;
Pou, Josep ;
Arias, Antoni ;
Spiteri, Cyril ;
Robles, Eider ;
Ceballos, Salvador .
RENEWABLE ENERGY, 2011, 36 (05) :1421-1430