Robust Nonlinear Control of a Wind Turbine with a Permanent Magnet Synchronous Generator

被引:1
作者
Lua, Cuauhtemoc Acosta [1 ,2 ]
Bianchi, Domenico [2 ,3 ]
Baragano, Salvador Martin [2 ,3 ]
Di Ferdinando, Mario [2 ,3 ]
Di Gennaro, Stefano [2 ,3 ]
机构
[1] Ctr Univ Cienega, Univ Guadalajara, Ave Univ 1115, Ocotlan 47820, Jalisco, Mexico
[2] Univ Aquila, Ctr Excellence DEWS, Via Vetoio, I-67100 Laquila, Italy
[3] Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio, I-67100 Laquila, Italy
关键词
wind turbine; nonlinear control; parameter variations; high-order sliding mode; SLIDING-MODE CONTROL; SYSTEMS; OBSERVER; DESIGN; PERFORMANCE;
D O I
10.3390/en16186649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper addresses the design of a robust nonlinear dynamic controller for a wind turbine. The turbine is equipped with a permanent magnet synchronous generator. The control problem involves tracking a suitable reference value for the turbine's angular velocity, which corresponds to the wind speed. This issue is tackled by compensating for variations in the electrical and mechanical parameters present in the mathematical model. Additionally, the problem is approached under the assumption that wind speed cannot be directly measured, a fact verified in practical scenarios. This situation is particularly relevant for real-world applications, where only nominal parameter values are accessible and accurate wind speed measurement is challenging due to disturbances caused by the turbine or other factors, despite the use of appropriate sensors. To achieve precise tracking of the angular velocity reference, effective compensation of perturbation terms arising from parameter uncertainties and errors in wind estimation becomes crucial. To address this problem, a wind velocity estimator is employed in conjunction with high-order sliding mode parameter estimators, ensuring the turbine's operation attains a high level of performance.
引用
收藏
页数:19
相关论文
共 52 条
  • [31] Homogeneity approach to high-order sliding mode design
    Levant, A
    [J]. AUTOMATICA, 2005, 41 (05) : 823 - 830
  • [32] Higher-order sliding modes, differentiation and output-feedback control
    Levant, A
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (9-10) : 924 - 941
  • [33] Disturbance-Observer-Based Control for Air Management of PEM Fuel Cell Systems via Sliding Mode Technique
    Liu, Jianxing
    Gao, Yabin
    Su, Xiaojie
    Wack, Maxime
    Wu, Ligang
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (03) : 1129 - 1138
  • [34] Design and experimental validation of enhanced adaptive second-order SMC for PMSG-based wind energy conversion system
    Matraji, Imad
    Al-Durra, Ahmed
    Errouissi, Rachid
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2018, 103 : 21 - 30
  • [35] Adaptive Sliding Mode Speed Control for Wind Energy Experimental System
    Merabet, Adel
    [J]. ENERGIES, 2018, 11 (09)
  • [36] Using a Supercapacitor to Mitigate Battery Microcycles Due to Wind Shear and Tower Shadow Effects in Wind-Diesel Microgrids
    Mohammadi, Ebrahim
    Rasoulinezhad, Ramtin
    Moschopoulos, Gerry
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (05) : 3677 - 3689
  • [37] Moreno JA, 2011, LECT NOTES CONTR INF, V412, P113
  • [38] Moreno JA, 2008, IEEE DECIS CONTR P, P2856, DOI 10.1109/CDC.2008.4739356
  • [39] A Sliding Mode Approach to Enhance the Power Quality of Wind Turbines Under Unbalanced Voltage Conditions
    Morshed, Mohammad Javad
    Fekih, Afef
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (02) : 566 - 574
  • [40] Sliding mode control of wind energy conversion systems: Trends and applications
    Mousavi, Yashar
    Bevan, Geraint
    Kucukdemiral, Ibrahim Beklan
    Fekih, Afef
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167