Robust Nonlinear Control of a Wind Turbine with a Permanent Magnet Synchronous Generator

被引:1
作者
Lua, Cuauhtemoc Acosta [1 ,2 ]
Bianchi, Domenico [2 ,3 ]
Baragano, Salvador Martin [2 ,3 ]
Di Ferdinando, Mario [2 ,3 ]
Di Gennaro, Stefano [2 ,3 ]
机构
[1] Ctr Univ Cienega, Univ Guadalajara, Ave Univ 1115, Ocotlan 47820, Jalisco, Mexico
[2] Univ Aquila, Ctr Excellence DEWS, Via Vetoio, I-67100 Laquila, Italy
[3] Univ Aquila, Dept Informat Engn Comp Sci & Math, Via Vetoio, I-67100 Laquila, Italy
关键词
wind turbine; nonlinear control; parameter variations; high-order sliding mode; SLIDING-MODE CONTROL; SYSTEMS; OBSERVER; DESIGN; PERFORMANCE;
D O I
10.3390/en16186649
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper addresses the design of a robust nonlinear dynamic controller for a wind turbine. The turbine is equipped with a permanent magnet synchronous generator. The control problem involves tracking a suitable reference value for the turbine's angular velocity, which corresponds to the wind speed. This issue is tackled by compensating for variations in the electrical and mechanical parameters present in the mathematical model. Additionally, the problem is approached under the assumption that wind speed cannot be directly measured, a fact verified in practical scenarios. This situation is particularly relevant for real-world applications, where only nominal parameter values are accessible and accurate wind speed measurement is challenging due to disturbances caused by the turbine or other factors, despite the use of appropriate sensors. To achieve precise tracking of the angular velocity reference, effective compensation of perturbation terms arising from parameter uncertainties and errors in wind estimation becomes crucial. To address this problem, a wind velocity estimator is employed in conjunction with high-order sliding mode parameter estimators, ensuring the turbine's operation attains a high level of performance.
引用
收藏
页数:19
相关论文
共 52 条
  • [21] Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs
    Floquet, T.
    Barbot, J. P.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2007, 38 (10) : 803 - 815
  • [22] Fridman L, 2002, CONTROL ENGN SER, V11, P53
  • [23] Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems
    Fridman, Leonid
    Shtessel, Yuri
    Edwards, Christopher
    Yan, Xing-Gang
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (4-5) : 399 - 412
  • [24] Gajewski P, 2017, 2017 INTERNATIONAL SYMPOSIUM ON ELECTRICAL MACHINES (SME)
  • [25] Fault deviation estimation and integral sliding mode control design for Lipschitz nonlinear systems
    Gao, Yabin
    Liu, Jianxing
    Sun, Guanghui
    Liu, Ming
    Wu, Ligang
    [J]. SYSTEMS & CONTROL LETTERS, 2019, 123 : 8 - 15
  • [26] Imine H, 2011, LECT NOTES CONTR INF, V414, P1, DOI 10.1007/978-3-642-22224-5
  • [27] Karim B, 2016, 2016 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT)
  • [28] Khalil H.K., 2002, NONLINEAR SYSTEMS
  • [29] Robust Sensors-Fault-Tolerance With Sliding Mode Estimation and Control for PMSM Drives
    Kommuri, Suneel Kumar
    Lee, Sang Bin
    Veluvolu, Kalyana Chakravarthy
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) : 17 - 28
  • [30] Robust Adaptive Super Twisting Algorithm Sliding Mode Control of a Wind System Based on the PMSG Generator
    Laabidine, Nada Zine
    Bossoufi, Badre
    El Kafazi, Ismail
    El Bekkali, Chakib
    El Ouanjli, Najib
    [J]. SUSTAINABILITY, 2023, 15 (14)