Attentive Multimodal Learning on Sensor Data using Hyperdimensional Computing

被引:2
|
作者
Zhao, Quanling [1 ]
Yu, Xiaofan [1 ]
Rosing, Tajana [1 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
来源
PROCEEDINGS OF THE 2023 THE 22ND INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN 2023 | 2023年
基金
美国国家科学基金会;
关键词
Hyperdimensional Computing; Multimodal Learning;
D O I
10.1145/3583120.3589824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the continuing advancement of ubiquitous computing and various sensor technologies, we are observing a massive population of multimodal sensors at the edge which posts significant challenges in fusing the data. In this poster we propose MultimodalHD, a novel Hyperdimensional Computing (HD)-based design for learning from multimodal data on edge devices. We use HD to encode raw sensory data to high-dimensional low-precision hypervectors, after which the multimodal hypervectors are fed to an attentive fusion module for learning richer representations via inter-modality attention. Our experiments on multimodal time-series datasets show MultimodalHD to be highly efficient. MultimodalHD achieves 17x and 14x speedup in training time per epoch on HAR and MHEALTH datasets when comparing with state-of-the-art RNNs, while maintaining comparable accuracy performance.
引用
收藏
页码:312 / 313
页数:2
相关论文
共 50 条
  • [41] Federated Learning on Multimodal Data: A Comprehensive Survey
    Lin, Yi-Ming
    Gao, Yuan
    Gong, Mao-Guo
    Zhang, Si-Jia
    Zhang, Yuan-Qiao
    Li, Zhi-Yuan
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (04) : 539 - 553
  • [42] Federated Learning on Multimodal Data: A Comprehensive Survey
    Yi-Ming Lin
    Yuan Gao
    Mao-Guo Gong
    Si-Jia Zhang
    Yuan-Qiao Zhang
    Zhi-Yuan Li
    Machine Intelligence Research, 2023, 20 : 539 - 553
  • [43] LEARNING TO FUSE LATENT REPRESENTATIONS FOR MULTIMODAL DATA
    Oyedotun, Oyebade K.
    Aouada, Djamila
    Ottersten, Bjoern
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3122 - 3126
  • [44] Energy-Efficient Sleep Apnea Detection Using a Hyperdimensional Computing Framework Based on Wearable Bracelet Photoplethysmography
    Chen, Tian
    Zhang, Jingtao
    Xu, Zeju
    Redmond, Stephen J.
    Lovell, Nigel H.
    Liu, Guanzheng
    Wang, Changhong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (08) : 2483 - 2494
  • [45] A review on data fusion in multimodal learning analytics and educational data mining
    Chango, Wilson
    Lara, Juan A.
    Cerezo, Rebeca
    Romero, Cristobal
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 12 (04)
  • [46] Multimodal Learning of Sensing Data and Skeletal Data for Estimation of Worker Behavior
    Komura K.
    Horikawa M.
    Okamoto A.
    Journal of Japan Industrial Management Association, 2023, 74 (02) : 31 - 39
  • [47] Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain Regions Using Short-Time iEEG Recordings
    Burrello, Alessio
    Schindler, Kaspar
    Benini, Luca
    Rahimi, Abbas
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (02) : 601 - 613
  • [48] Multimodal learning and inference from visual and remotely sensed data
    Rao, Dushyant
    De Deuge, Mark
    Nourani-Vatani, Navid
    Williams, Stefan B.
    Pizarro, Oscar
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (01) : 24 - 43
  • [49] Multimodal learning for fetal distress diagnosis using a multimodal medical information fusion framework
    Zhang, Yefei
    Deng, Yanjun
    Zhou, Zhixin
    Zhang, Xianfei
    Jiao, Pengfei
    Zhao, Zhidong
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [50] MCL: A Contrastive Learning Method for Multimodal Data Fusion in Violence Detection
    Yang, Liu
    Wu, Zhenjie
    Hong, Junkun
    Long, Jun
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 408 - 412