Attentive Multimodal Learning on Sensor Data using Hyperdimensional Computing

被引:2
|
作者
Zhao, Quanling [1 ]
Yu, Xiaofan [1 ]
Rosing, Tajana [1 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
来源
PROCEEDINGS OF THE 2023 THE 22ND INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN 2023 | 2023年
基金
美国国家科学基金会;
关键词
Hyperdimensional Computing; Multimodal Learning;
D O I
10.1145/3583120.3589824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the continuing advancement of ubiquitous computing and various sensor technologies, we are observing a massive population of multimodal sensors at the edge which posts significant challenges in fusing the data. In this poster we propose MultimodalHD, a novel Hyperdimensional Computing (HD)-based design for learning from multimodal data on edge devices. We use HD to encode raw sensory data to high-dimensional low-precision hypervectors, after which the multimodal hypervectors are fed to an attentive fusion module for learning richer representations via inter-modality attention. Our experiments on multimodal time-series datasets show MultimodalHD to be highly efficient. MultimodalHD achieves 17x and 14x speedup in training time per epoch on HAR and MHEALTH datasets when comparing with state-of-the-art RNNs, while maintaining comparable accuracy performance.
引用
收藏
页码:312 / 313
页数:2
相关论文
共 50 条
  • [31] Efficient Brain-Inspired Hyperdimensional Learning with Spatiotemporal Structured Data
    Kim, Jiseung
    Lee, Hyunsei
    Imani, Mohsen
    Kim, Yeseong
    29TH INTERNATIONAL SYMPOSIUM ON THE MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2021), 2021, : 89 - 96
  • [32] Efficient event-based robotic grasping perception using hyperdimensional computing
    Hassan, Eman
    Zou, Zhuowen
    Chen, Hanning
    Imani, Mohsen
    Zweiri, Yahya
    Saleh, Hani
    Mohammad, Baker
    INTERNET OF THINGS, 2024, 26
  • [33] Multi-Class Classification of Abnormal Heartbeat Detection using Hyperdimensional Computing
    Xu, Wenrui
    Parhi, Keshab K.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2024, : 463 - 477
  • [34] Error Resilient Hyperdimensional Computing Using Hypervector Encoding and Cross-Clustering
    Mejri, Mohamed
    Amarnath, Chandramouli
    Chatterjee, Abhijit
    2024 IEEE 42ND VLSI TEST SYMPOSIUM, VTS 2024, 2024,
  • [35] Online Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power Platform Using Hyperdimensional Computing
    Benatti, Simone
    Montagna, Fabio
    Kartsch, Victor
    Rahimi, Abbas
    Rossi, Davide
    Benini, Luca
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (03) : 516 - 528
  • [36] IP-HDC: Information-Preserved Hyperdimensional Computing for Multi-task Learning
    Chang, Cheng-Yang
    Chuang, Yu-Chuan
    Wu, An-Yeu
    2020 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2020, : 146 - 151
  • [37] Minority Resampling Boosted Unsupervised Learning With Hyperdimensional Computing for Threat Detection at the Edge of Internet of Things
    Christopher, Vivek
    Aathman, Tharmasanthiran
    Mahendrakumaran, Kayathiri
    Nawaratne, Rashmika
    De Silva, Daswin
    Nanayakkara, Vishaka
    Alahakoon, Damminda
    IEEE ACCESS, 2021, 9 : 126646 - 126657
  • [38] Efficient emotion recognition using hyperdimensional computing with combinatorial channel encoding and cellular automata
    Menon, Alisha
    Natarajan, Anirudh
    Agashe, Reva
    Sun, Daniel
    Aristio, Melvin
    Liew, Harrison
    Shao, Yakun Sophia
    Rabaey, Jan M.
    BRAIN INFORMATICS, 2022, 9 (01)
  • [39] A Brain-Inspired Hyperdimensional Computing Approach for Classifying Massive DNA Methylation Data of Cancer
    Cumbo, Fabio
    Cappelli, Eleonora
    Weitschek, Emanuel
    ALGORITHMS, 2020, 13 (09)
  • [40] A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part I: Models and Data Transformations
    Kleyko, Denis
    Rachkovskij, Dmitri A.
    Osipov, Evgeny
    Rahimi, Abbas
    ACM COMPUTING SURVEYS, 2023, 55 (06)