Attentive Multimodal Learning on Sensor Data using Hyperdimensional Computing

被引:2
|
作者
Zhao, Quanling [1 ]
Yu, Xiaofan [1 ]
Rosing, Tajana [1 ]
机构
[1] Univ Calif San Diego, Comp Sci & Engn, La Jolla, CA 92093 USA
来源
PROCEEDINGS OF THE 2023 THE 22ND INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN 2023 | 2023年
基金
美国国家科学基金会;
关键词
Hyperdimensional Computing; Multimodal Learning;
D O I
10.1145/3583120.3589824
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the continuing advancement of ubiquitous computing and various sensor technologies, we are observing a massive population of multimodal sensors at the edge which posts significant challenges in fusing the data. In this poster we propose MultimodalHD, a novel Hyperdimensional Computing (HD)-based design for learning from multimodal data on edge devices. We use HD to encode raw sensory data to high-dimensional low-precision hypervectors, after which the multimodal hypervectors are fed to an attentive fusion module for learning richer representations via inter-modality attention. Our experiments on multimodal time-series datasets show MultimodalHD to be highly efficient. MultimodalHD achieves 17x and 14x speedup in training time per epoch on HAR and MHEALTH datasets when comparing with state-of-the-art RNNs, while maintaining comparable accuracy performance.
引用
收藏
页码:312 / 313
页数:2
相关论文
共 50 条
  • [1] Symbolic Representation and Learning With Hyperdimensional Computing
    Mitrokhin, Anton
    Sutor, Peter
    Summers-Stay, Douglas
    Fermueller, Cornelia
    Aloimonos, Yiannis
    FRONTIERS IN ROBOTICS AND AI, 2020, 7
  • [2] A Binary Learning Framework for Hyperdimensional Computing
    Imani, Mohsen
    Messerly, John
    Wu, Fan
    Pi, Wang
    Rosing, Tajana
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 126 - 131
  • [3] HDFL: Private and Robust Federated Learning using Hyperdimensional Computing
    Kasyap, Harsh
    Tripathy, Somanath
    Conti, Mauro
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 214 - 221
  • [4] Flexible and Personalized Learning for Wearable Health Applications using HyperDimensional Computing
    Shahhosseini, Sina
    Ni, Yang
    Naeini, Emad Kasaeyan
    Imani, Mohsen
    Rahmani, Amir M.
    Dutt, Nikil
    PROCEEDINGS OF THE 32ND GREAT LAKES SYMPOSIUM ON VLSI 2022, GLSVLSI 2022, 2022, : 357 - 360
  • [5] An Extension to Basis-Hypervectors for Learning from Circular Data in Hyperdimensional Computing
    Nunes, Igor
    Heddes, Mike
    Givargis, Tony
    Nicolau, Alexandru
    2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC, 2023,
  • [6] Hyperdimensional Computing for Robust and Efficient Unsupervised Learning
    Yun, Sanggeon
    Barkam, Hamza Errahmouni
    Genssler, Paul R.
    Latapie, Hugo
    Amrouch, Hussam
    Imani, Mohsen
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 281 - 288
  • [7] CascadeHD: Efficient Many-Class Learning Framework Using Hyperdimensional Computing
    Kim, Yeseong
    Kim, Jiseung
    Imani, Mohsen
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 775 - 780
  • [8] Towards Forward-Only Learning for Hyperdimensional Computing
    Lee, Hyunsei
    Kwon, Hyukjun
    Kim, Jiseung
    Kim, Seohyun
    Imani, Mohsen
    Kim, Yeseong
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [9] HyperMetric: Robust Hyperdimensional Computing on Error-prone Memories using Metric Learning
    Xu, Weihong
    Swaminathan, Viji
    Pinge, Sumukh
    Fuhrman, Sean
    Rosing, Tajana
    2023 IEEE 41ST INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2023, : 243 - 246
  • [10] EventHD: Robust and efficient hyperdimensional learning with neuromorphic sensor
    Zou, Zhuowen
    Alimohamadi, Haleh
    Kim, Yeseong
    Najafi, M. Hassan
    Srinivasa, Narayan
    Imani, Mohsen
    FRONTIERS IN NEUROSCIENCE, 2022, 16