Fast uncertainty quantification of spent nuclear fuel with neural networks

被引:2
作者
Alba, Arnau [1 ,2 ]
Adelmann, Andreas [1 ]
Munster, Lucas [1 ,2 ]
Rochman, Dimitri [1 ]
Boiger, Romana [1 ]
机构
[1] Paul Scherrer Inst PSI, Forsch Str 111, CH-5232 Villigen, Switzerland
[2] Swiss Fed Inst Technol, Ramistrasse 101, CH-8092 Zurich, Switzerland
关键词
Decay heat; Neural network; Nuclide concentration; Sensitivity analysis; Spent nuclear fuel; Uncertainty quantification;
D O I
10.1016/j.anucene.2023.110204
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The accurate calculation and uncertainty quantification of the characteristics of spent nuclear fuel (SNF) play a crucial role in ensuring the safety, efficiency, and sustainability of nuclear energy production, waste management, and nuclear safeguards. State of the art physics-based models, while reliable, are computationally intensive and time-consuming. This paper presents a surrogate modeling approach using neural networks (NN) to predict a number of SNF characteristics with reduced computational costs compared to physics-based models. An NN is trained using data generated from CASMO5 lattice calculations. The trained NN accurately predicts decay heat and nuclide concentrations of SNF, as a function of key input parameters, such as enrichment, burnup, cooling time between cycles, mean boron concentration and fuel temperature. The model is validated against physics-based decay heat simulations and measurements of different uranium oxide fuel assemblies from two different pressurized water reactors. In addition, the NN is used to perform sensitivity analysis and uncertainty quantification. The results are in very good alignment to CASMO5, while the computational costs (taking into account the costs of generating training samples) are reduced by a factor of 10 or more. Our findings demonstrate the feasibility of using NNs as surrogate models for fast characterization of SNF, providing a promising avenue for improving computational efficiency in assessing nuclear fuel behavior and associated risks.
引用
收藏
页数:8
相关论文
共 25 条
  • [1] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [2] [Anonymous], 1993, Math. Model. Comput. Exp
  • [3] [Anonymous], 2022, Nuclear Energy Series
  • [4] Deep learning approach to nuclear fuel transmutation in a fuel cycle simulator
    Bae, Jin Whan
    Rykhlevskii, Andrei
    Chee, Gwendolyn
    Huff, Kathryn D.
    [J]. ANNALS OF NUCLEAR ENERGY, 2020, 139
  • [5] ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology
    Chadwick, M. B.
    Oblozinsky, P.
    Herman, M.
    Greene, N. M.
    McKnight, R. D.
    Smith, D. L.
    Young, P. G.
    MacFarlane, R. E.
    Hale, G. M.
    Frankle, S. C.
    Kahler, A. C.
    Kawano, T.
    Little, R. C.
    Madland, D. G.
    Moller, P.
    Mosteller, R. D.
    Page, P. R.
    Talou, P.
    Trellue, H.
    White, M. C.
    Wilson, W. B.
    Arcilla, R.
    Dunford, C. L.
    Mughabghab, S. F.
    Pritychenko, B.
    Rochman, D.
    Sonzogni, A. A.
    Lubitz, C. R.
    Trumbull, T. H.
    Weinman, J. P.
    Brown, D. A.
    Cullen, D. E.
    Heinrichs, D. P.
    McNabb, D. P.
    Derrien, H.
    Dunn, M. E.
    Larson, N. M.
    Leal, L. C.
    Carlson, A. D.
    Block, R. C.
    Briggs, J. B.
    Cheng, E. T.
    Huria, H. C.
    Zerkle, M. L.
    Kozier, K. S.
    Courcelle, A.
    Pronyaev, V.
    van der Marck, S. C.
    [J]. NUCLEAR DATA SHEETS, 2006, 107 (12) : 2931 - 3059
  • [6] Ebiwonjumi B, 2021, NUCL ENG TECHNOL, V53, P3563
  • [7] Herman J., 2017, J OPEN SOURCE SOFTW, V2, P97, DOI DOI 10.21105/JOSS.00097
  • [8] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [9] Data-driven machine learning for disposal of high-level nuclear waste: A review
    Hu, Guang
    Pfingsten, Wilfried
    [J]. ANNALS OF NUCLEAR ENERGY, 2023, 180
  • [10] Estimation of biases and uncertainties on PWR nuclide inventories for severe accidents analyses
    Ichou, R.
    Clavel, J. B.
    Bonthoux, S.
    Bernard, F.
    Taforeau, J.
    Malvagi, F.
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 11