A Note on Fractional Curl Operator

被引:0
|
作者
Stefanski, Tomasz P. [1 ]
Czachor, Marek [2 ]
机构
[1] Gdansk Univ Technol, Fac Elect Telecommun & Informat, PL-80233 Gdansk, Poland
[2] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80233 Gdansk, Poland
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2023年 / 22卷 / 10期
关键词
Maxwell equations; Electromagnetic field theory; fractional calculus; quantum computing; DUALITY;
D O I
10.1109/LAWP.2023.3286955
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann-Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector while the right-handed basis vector stems from the complex conjugation of the left-handed counterpart. Therefore, the fractional curl operator describes another representation of rotations of the electromagnetic field decomposed into circular polarisations. Finally, we demonstrate that this operator can describe a single-qubit phase-shift gate in quantum computing.
引用
收藏
页码:2352 / 2356
页数:5
相关论文
共 50 条
  • [21] Quantum-Fractal-Fractional Operator in a Complex Domain
    Attiya, Adel A.
    Ibrahim, Rabha W.
    Hakami, Ali H.
    Cho, Nak Eun
    Yassen, Mansour F.
    AXIOMS, 2025, 14 (01)
  • [22] Sinc-Fractional Operator on Shannon Wavelet Space
    Cattani, Carlo
    FRONTIERS IN PHYSICS, 2018, 6
  • [23] Half-Way Duality in Electromagnetics Using an Explicit Expression for the Half-Curl Operator
    Kastner, Raphael
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (05) : 3747 - 3750
  • [24] A note on short memory principle of fractional calculus
    Yiheng Wei
    Yuquan Chen
    Songsong Cheng
    Yong Wang
    Fractional Calculus and Applied Analysis, 2017, 20 : 1382 - 1404
  • [25] A NOTE ON SHORT MEMORY PRINCIPLE OF FRACTIONAL CALCULUS
    Wei, Yiheng
    Chen, Yuquan
    Cheng, Songsong
    Wang, Yong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (06) : 1382 - 1404
  • [26] A note on fractional Bessel equation and its asymptotics
    Okrasinski, Wojciech
    Plociniczak, Lukasz
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 559 - 572
  • [27] A metaheuristic optimization approach to discretize the fractional order Laplacian operator without employing a discretization operator
    Mahata, Shibendu
    Saha, Suman Kumar
    Kar, Rajib
    Mandal, Durbadal
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 534 - 545
  • [28] A note on fractional Bessel equation and its asymptotics
    Wojciech Okrasiński
    Łukasz Płociniczak
    Fractional Calculus and Applied Analysis, 2013, 16 : 559 - 572
  • [29] A note on Lp-norms of fractional systems
    Malti, Rachid
    AUTOMATICA, 2013, 49 (09) : 2923 - 2927
  • [30] Solutions of the Radial Component of the Fractional Schrodinger Equation Using N-Fractional Calculus Operator
    Ozturk, O.
    Yilmazer, R.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (01) : 191 - 199