Protein-ligand binding affinity prediction exploiting sequence constituent homology

被引:1
|
作者
Abdel-Rehim, Abbi [1 ,7 ]
Orhobor, Oghenejokpeme [2 ]
Hang, Lou [3 ]
Ni, Hao [3 ,4 ]
King, Ross D. [1 ,4 ,5 ,6 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[2] Natl Inst Agr Bot, Cambridge CB3 0LE, England
[3] UCL, Dept Math, London WC1H 0AY, England
[4] Alan Turing Inst, London NW1 2DB, England
[5] Chalmers Univ Technol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden
[6] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
[7] Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
基金
英国工程与自然科学研究理事会;
关键词
SCORING FUNCTIONS;
D O I
10.1093/bioinformatics/btad502
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities. Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been developed making use of some or all the spatial and categorical information available in these structures. The evaluation of such methods has mainly been carried out using datasets from PDBbind. Particularly the Comparative Assessment of Scoring Functions (CASF) 2007, 2013, and 2016 datasets with dedicated test sets. This work demonstrates that only a small number of simple descriptors is necessary to efficiently estimate binding affinity for these complexes without the need to know the exact binding conformation of a ligand.Results The developed approach of using a small number of ligand and protein descriptors in conjunction with gradient boosting trees demonstrates high performance on the CASF datasets. This includes the commonly used benchmark CASF2016 where it appears to perform better than any other approach. This methodology is also useful for datasets where the spatial relationship between the ligand and protein is unknown as demonstrated using a large ChEMBL-derived dataset.Availability and implementation Code and data uploaded to https://github.com/abbiAR/PLBAffinity.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Prediction of Protein-Ligand Binding Pose and Affinity Using the gREST plus FEP Method
    Oshima, Hiraku
    Re, Suyong
    Sugita, Yuji
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (11) : 5382 - 5394
  • [42] SE-OnionNet: A Convolution Neural Network for Protein-Ligand Binding Affinity Prediction
    Wang, Shudong
    Liu, Dayan
    Ding, Mao
    Du, Zhenzhen
    Zhong, Yue
    Song, Tao
    Zhu, Jinfu
    Zhao, Renteng
    FRONTIERS IN GENETICS, 2021, 11
  • [43] GNNSeq: A Sequence-Based Graph Neural Network for Predicting Protein-Ligand Binding Affinity
    Dandibhotla, Somanath
    Samudrala, Madhav
    Kaneriya, Arjun
    Dakshanamurthy, Sivanesan
    PHARMACEUTICALS, 2025, 18 (03)
  • [44] Protein-Ligand Binding Affinity by Nonequilibrium Free Energy Methods
    Cossins, Benjamin P.
    Foucher, Sebastien
    Edge, Colin A.
    Essex, Jonathan W.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (47): : 14985 - 14992
  • [45] Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference
    Jones, Derek
    Kim, Hyojin
    Zhang, Xiaohua
    Zemla, Adam
    Stevenson, Garrett
    Bennett, W. F. Drew
    Kirshner, Daniel
    Wong, Sergio E.
    Lightstone, Felice C.
    Allen, Jonathan E.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (04) : 1583 - 1592
  • [46] Learning protein-ligand binding affinity with atomic environment vectors
    Meli, Rocco
    Anighoro, Andrew
    Bodkin, Mike J.
    Morris, Garrett M.
    Biggin, Philip C.
    JOURNAL OF CHEMINFORMATICS, 2021, 13 (01)
  • [47] Regulation of protein-ligand binding affinity by hydrogen bond pairing
    Chen, Deliang
    Oezguen, Numan
    Urvil, Petri
    Ferguson, Colin
    Dann, Sara M.
    Savidge, Tor C.
    SCIENCE ADVANCES, 2016, 2 (03):
  • [48] Structure-Aware Graph Attention Diffusion Network for Protein-Ligand Binding Affinity Prediction
    Li, Mei
    Cao, Ye
    Liu, Xiaoguang
    Ji, Hua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 18370 - 18380
  • [49] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Debby D. Wang
    Wenhui Wu
    Ran Wang
    Journal of Cheminformatics, 16
  • [50] SFCscore: Scoring functions for affinity prediction of protein-ligand complexes
    Sotriffer, Christoph A.
    Sanschagrin, Paul
    Matter, Hans
    Klebe, Gerhard
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 73 (02) : 395 - 419