Protein-ligand binding affinity prediction exploiting sequence constituent homology

被引:1
作者
Abdel-Rehim, Abbi [1 ,7 ]
Orhobor, Oghenejokpeme [2 ]
Hang, Lou [3 ]
Ni, Hao [3 ,4 ]
King, Ross D. [1 ,4 ,5 ,6 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[2] Natl Inst Agr Bot, Cambridge CB3 0LE, England
[3] UCL, Dept Math, London WC1H 0AY, England
[4] Alan Turing Inst, London NW1 2DB, England
[5] Chalmers Univ Technol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden
[6] Chalmers Univ Technol, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden
[7] Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
基金
英国工程与自然科学研究理事会;
关键词
SCORING FUNCTIONS;
D O I
10.1093/bioinformatics/btad502
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities. Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been developed making use of some or all the spatial and categorical information available in these structures. The evaluation of such methods has mainly been carried out using datasets from PDBbind. Particularly the Comparative Assessment of Scoring Functions (CASF) 2007, 2013, and 2016 datasets with dedicated test sets. This work demonstrates that only a small number of simple descriptors is necessary to efficiently estimate binding affinity for these complexes without the need to know the exact binding conformation of a ligand.Results The developed approach of using a small number of ligand and protein descriptors in conjunction with gradient boosting trees demonstrates high performance on the CASF datasets. This includes the commonly used benchmark CASF2016 where it appears to perform better than any other approach. This methodology is also useful for datasets where the spatial relationship between the ligand and protein is unknown as demonstrated using a large ChEMBL-derived dataset.Availability and implementation Code and data uploaded to https://github.com/abbiAR/PLBAffinity.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Comparative evaluation of methods for the prediction of protein-ligand binding sites
    Utges, Javier S.
    Barton, Geoffrey J.
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01):
  • [22] Exploring the computational methods for protein-ligand binding site prediction
    Zhao, Jingtian
    Cao, Yang
    Zhang, Le
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 417 - 426
  • [23] A spatial-temporal graph attention network for protein-ligand binding affinity prediction based on molecular geometry
    Li, Gaili
    Yuan, Yongna
    Zhang, Ruisheng
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [24] KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks
    Jimenez, Jose
    Skalic, Miha
    Martinez-Rosell, Gerard
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (02) : 287 - 296
  • [25] BoostSF-SHAP: Gradient boosting-based software for protein-ligand binding affinity prediction with explanations
    Chen, Xingqian
    Song, Shuangbao
    Song, Zhenyu
    Song, Shuangyu
    Ji, Junkai
    NEUROCOMPUTING, 2025, 622
  • [26] Interformer: an interaction-aware model for protein-ligand docking and affinity prediction
    Lai, Houtim
    Wang, Longyue
    Qian, Ruiyuan
    Huang, Junhong
    Zhou, Peng
    Ye, Geyan
    Wu, Fandi
    Wu, Fang
    Zeng, Xiangxiang
    Liu, Wei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [27] CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism
    Jin, Zhi
    Wu, Tingfang
    Chen, Taoning
    Pan, Deng
    Wang, Xuejiao
    Xie, Jingxin
    Quan, Lijun
    Lyu, Qiang
    BIOINFORMATICS, 2023, 39 (02)
  • [28] The Importance of the Regression Model in the Structure-Based Prediction of Protein-Ligand Binding
    Li, Hongjian
    Leung, Kwong-Sak
    Wong, Man-Hon
    Ballester, Pedro J.
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 : 219 - 230
  • [29] Bringing Clarity to the Prediction of Protein-Ligand Binding Free Energies via "Blurring"
    Ucisik, Melek N.
    Zheng, Zheng
    Faver, John C.
    Merz, Kenneth M.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (03) : 1314 - 1325
  • [30] OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein-Ligand Binding Affinity Prediction
    Zheng, Liangzhen
    Fan, Jingrong
    Mu, Yuguang
    ACS OMEGA, 2019, 4 (14): : 15956 - 15965