Strengthening reversibility at high rate of spinel LiMn2O4 by aluminum and copper Co-doping for lithium ion battery

被引:6
作者
Li, Bingchen [1 ]
Wang, Mei [2 ]
Zhang, Yuanxia [1 ]
Guo, Qi [1 ]
Tian, Ru-Ning [2 ]
Chen, Jingjing [3 ]
Wang, Dajian [2 ]
Dong, Chenlong [2 ,4 ,5 ]
Mao, Zhiyong [1 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Photoelect Mat & Devices, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Key Lab Display Mat & Photoelect Devices, Minist Educ, Tianjin 300384, Peoples R China
[3] Tianjin Univ Technol, Sch Sci, Tianjin Key Lab Quantum Opt & Intelligent Photon, Tianjin 300384, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
[5] Tianjin Baihui Unique Technol Co Ltd, Tianjin 300402, Peoples R China
基金
中国国家自然科学基金;
关键词
Spinel LiMn 2 O 4; Jahn -teller effect; High rate; Co; -doping; Lithium ion battery; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; MANGANESE DISSOLUTION; STABILITY; POWER;
D O I
10.1016/j.electacta.2023.142898
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Typical LiMn2O4 cathode materials for lithium ion batteries suffer from the Jahn-Teller distortion, unstable phase transformation and the Mn3+ disproportionation. In this work, the Cu and Al elements are designed to be respectively doped into Mn sites and Li sites to reinforce the structural stability and thereby improve cyclic capacity and stability under wide electrochemical window. A conventional sol-gel method is used to synthesis Cu and Al co-doped Li1-3xAlxMn1.75Cu0.25O4 (x = 0, 0.02, 0.08 and 0.14) of lithium manganese oxide (LMO) spinel. Benefitting from the enhanced structural stability, improved ionic/electronic conductivity and decreased JahnTeller effects, at a high current density of 5 C, the Li0.94Al0.02Mn1.75Cu0.25O4 provides an initial capacity of 106.3 mA h g � 1 within a wide potential window of 2 - 4.8 V and harvests a high reversible capacity of 90.2 mA h g � 1 after 300 cycles (84.9% capacity retention), which is much higher than LMO (77.3 mA h g � 1) and LMCO (69.0 mA h g � 1). The Cu doping can enhance the phase transformation reversibility between & lambda;-MnO2 and LiMn2O4, whereas the Al doping can strengthen the cubic-to-tetragonal reversibility. This work provides an effective strategy for engineering stable LiMn2O4 spinel cathodes under high current density and wide potential window for lithium ion battery.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Hierarchical LiMn2O4 microspheres for high rate lithium ion batteries, and direct electrochemistry and electrocatalysis [J].
Gu, Yuanxiang ;
Tang, Zhanlei ;
Deng, Ying ;
Wang, Lei .
ELECTROCHIMICA ACTA, 2013, 94 :165-171
[42]   Nanoarchitectured LiMn2O4/Graphene/ZnO Composites as Electrodes for Lithium Ion Batteries [J].
Aziz, Saad ;
Zhao, Jianqing ;
Cain, Carrington ;
Wang, Ying .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2014, 30 (05) :427-433
[43]   Nano-sized LiMn2O4 spinel cathode materials exhibiting high rate discharge capability for lithium-ion batteries [J].
Chen, Yingchao ;
Xie, Kai ;
Pan, Yi ;
Zheng, Chunman .
JOURNAL OF POWER SOURCES, 2011, 196 (15) :6493-6497
[44]   Influence of W-Doping on Electrochemical Performance of Spinel LiMn2O4 [J].
Lee, Dong Kyu ;
Prabakar, S. J. Richard ;
Pyo, Myoungho .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (08) :5517-5521
[45]   Descriptor-Based Analysis of Atomic Layer Deposition Mechanisms on Spinel LiMn2O4 Lithium-Ion Battery Cathodes [J].
Warburton, Robert E. ;
Young, Matthias J. ;
Letourneau, Steven ;
Elam, Jeffrey W. ;
Greeley, Jeffrey .
CHEMISTRY OF MATERIALS, 2020, 32 (05) :1794-1806
[46]   Performance improvement of LiMn2O4 as cathode material for lithium ion battery with bismuth modification [J].
Tan, C. L. ;
Zhou, H. J. ;
Li, W. S. ;
Hou, X. H. ;
Lue, D. S. ;
Xu, M. Q. ;
Huang, Q. M. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :408-413
[47]   Preparation of Ni-Zn dual-doped polyhedral LiMn2O4 for endurable cycling lithium ion batteries at high rate [J].
Liang, Linqiao ;
Liu, Haiyang ;
Liang, Yongshun ;
Li, Yiyao ;
Bai, Wei ;
Guo, Junming ;
Xiang, Mingwu .
VACUUM, 2023, 213
[48]   Influence of Electrolyte Composition on the Intercalation-Deintercalation Process of Lithium Ion in Spinel LiMn2O4 [J].
Qiu Xiang-Yun ;
Zhuang Quan-Chao ;
Wang Hong-Ming ;
Cui Yong-Li ;
Fang Liang ;
Sun Shi-Gang .
ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (06) :1499-1506
[49]   Impact of Carbon Nanostructures as Additives with Spinel Li4Ti5O12/LiMn2O4 Electrodes for Lithium Ion Battery Technology [J].
Gangaja, Binitha ;
Reddy, Kasireddy Siva ;
Nair, Shantikumar ;
Santhanagopalan, Dhamodaran .
CHEMISTRYSELECT, 2017, 2 (30) :9772-9776
[50]   Synthesis of Single-Crystalline Spinel LiMn2O4 Nanorods for Lithium-Ion Batteries with High Rate Capability and Long Cycle Life [J].
Xie, Xiuqiang ;
Su, Dawei ;
Sun, Bing ;
Zhang, Jinqiang ;
Wang, Chengyin ;
Wang, Guoxiu .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (51) :17125-17131