Strengthening reversibility at high rate of spinel LiMn2O4 by aluminum and copper Co-doping for lithium ion battery

被引:6
|
作者
Li, Bingchen [1 ]
Wang, Mei [2 ]
Zhang, Yuanxia [1 ]
Guo, Qi [1 ]
Tian, Ru-Ning [2 ]
Chen, Jingjing [3 ]
Wang, Dajian [2 ]
Dong, Chenlong [2 ,4 ,5 ]
Mao, Zhiyong [1 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Photoelect Mat & Devices, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Key Lab Display Mat & Photoelect Devices, Minist Educ, Tianjin 300384, Peoples R China
[3] Tianjin Univ Technol, Sch Sci, Tianjin Key Lab Quantum Opt & Intelligent Photon, Tianjin 300384, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
[5] Tianjin Baihui Unique Technol Co Ltd, Tianjin 300402, Peoples R China
基金
中国国家自然科学基金;
关键词
Spinel LiMn 2 O 4; Jahn -teller effect; High rate; Co; -doping; Lithium ion battery; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; MANGANESE DISSOLUTION; STABILITY; POWER;
D O I
10.1016/j.electacta.2023.142898
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Typical LiMn2O4 cathode materials for lithium ion batteries suffer from the Jahn-Teller distortion, unstable phase transformation and the Mn3+ disproportionation. In this work, the Cu and Al elements are designed to be respectively doped into Mn sites and Li sites to reinforce the structural stability and thereby improve cyclic capacity and stability under wide electrochemical window. A conventional sol-gel method is used to synthesis Cu and Al co-doped Li1-3xAlxMn1.75Cu0.25O4 (x = 0, 0.02, 0.08 and 0.14) of lithium manganese oxide (LMO) spinel. Benefitting from the enhanced structural stability, improved ionic/electronic conductivity and decreased JahnTeller effects, at a high current density of 5 C, the Li0.94Al0.02Mn1.75Cu0.25O4 provides an initial capacity of 106.3 mA h g � 1 within a wide potential window of 2 - 4.8 V and harvests a high reversible capacity of 90.2 mA h g � 1 after 300 cycles (84.9% capacity retention), which is much higher than LMO (77.3 mA h g � 1) and LMCO (69.0 mA h g � 1). The Cu doping can enhance the phase transformation reversibility between & lambda;-MnO2 and LiMn2O4, whereas the Al doping can strengthen the cubic-to-tetragonal reversibility. This work provides an effective strategy for engineering stable LiMn2O4 spinel cathodes under high current density and wide potential window for lithium ion battery.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A literature review and test: Structure and physicochemical properties of spinel LiMn2O4 synthesized by different temperatures for lithium ion battery
    Yi, Ting-Feng
    Hao, Chun-Li
    Yue, Cai-Bo
    Zhu, Rong-Sun
    Shu, Jie
    SYNTHETIC METALS, 2009, 159 (13) : 1255 - 1260
  • [22] Study on yttrium doping of spherical spinel LiMn2O4
    He, XM
    Pu, WH
    Cai, Y
    Wang, XQ
    Jiang, CY
    Wan, CR
    ACTA CHIMICA SINICA, 2005, 63 (19) : 1853 - 1856
  • [23] Cobalt doped spinel LiMn2O4 cathode toward high-rate performance lithium-ion batteries
    Xu, Wangqiong
    Guo, Shimei
    Li, Qiling
    Xia, Shubiao
    Cheng, Feixiang
    Sui, Fengrui
    Qi, Ruijuan
    Cao, Yiming
    Huang, Rong
    VACUUM, 2024, 219
  • [24] Preparation of Spheroidal Spinel LiMn2O4 and Its High Temperature Performance
    Gao, Yike
    Peng, Junqi
    Duan, Zhihong
    Hu, Ailin
    Lu, Xiaoying
    Jiang, Qi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : A2903 - A2909
  • [25] Electrochemical Studies on Al2O3-Coated Spinel LiMn2O4 for Lithium Ion Batteries
    Bai, Ying
    Wu, Chuan
    Wu, Feng
    Wu, Bo-rong
    Chen, Shi
    ADVANCED MATERIAL SCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2011, 675-677 : 37 - 40
  • [26] Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material
    Zhao, Ming Shu
    Song, Xiao Ping
    JOURNAL OF POWER SOURCES, 2007, 164 (02) : 822 - 828
  • [27] The Influence of Ultrathin Amorphous ALD Alumina and Titania on the Rate Capability of Anatase TiO2 and LiMn2O4 Lithium Ion Battery Electrodes
    Mattelaer, Felix
    Vereecken, Philippe M.
    Dendooven, Jolien
    Detavernier, Christophe
    ADVANCED MATERIALS INTERFACES, 2017, 4 (13):
  • [28] Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries
    Tang, W.
    Wang, X. J.
    Hou, Y. Y.
    Li, L. L.
    Sun, H.
    Zhu, Y. S.
    Bai, Y.
    Wu, Y. P.
    Zhu, K.
    van Ree, T.
    JOURNAL OF POWER SOURCES, 2012, 198 : 308 - 311
  • [29] Graphene/LiMn2O4 nanocomposites for enhanced lithium ion batteries with high rate capability
    Pyun, Min Ho
    Park, Yong Joon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 643 : S90 - S94
  • [30] Rechargeable Aqueous Lithium-Ion Battery of TiO2/LiMn2O4 with a High Voltage
    Liu, S.
    Ye, S. H.
    Li, C. Z.
    Pan, G. L.
    Gao, X. P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) : A1490 - A1497