Facets of Symmetric Edge Polytopes for Graphs with Few Edges

被引:0
作者
Braun, Benjamin [1 ]
Bruegge, Kaitlin [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetric edge polytopes, also called adjacency polytopes, are lattice polytopes determined by simple undirected graphs. We introduce the integer array giving the maximum number of facets of a symmetric edge polytope for a connected graph having a fixed number of vertices and edges and the corresponding array of minimal values. We establish formulas for the number of facets obtained in several classes of sparse graphs, and provide partial progress toward conjectures that identify facet-maximizing graphs in these classes. These formulas are combinatorial in nature, and lead to independently interesting observations and conjectures regarding integer sequences defined by sums of products of binomial coefficients.
引用
收藏
页数:29
相关论文
共 19 条
  • [1] Facets and facet subgraphs of symmetric edge polytopes
    Chen, Tianran
    Davis, Robert
    Korchevskaia, Evgeniia
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 328 : 139 - 153
  • [2] Chen TR, 2020, Arxiv, DOI arXiv:1912.02841
  • [3] Counting Equilibria of the Kuramoto Model Using Birationally Invariant Intersection Index
    Chen, Tianran
    Davis, Robert
    Mehta, Dhagash
    [J]. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2018, 2 (04): : 489 - 507
  • [4] On the gamma-vector of symmetric edge polytopes
    D'ali, Alessio
    Juhnke-Kubitzke, Martina
    Koehne, Daniel
    Venturello, Lorenzo
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 487 - 515
  • [5] Many faces of symmetric edge polytopes
    D'Ali, Alessio
    Delucchi, Emanuele
    Michalek, Mateusz
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03)
  • [6] ON A CLASS OF DEGENERATE EXTREMAL GRAPH PROBLEMS
    FAUDREE, RJ
    SIMONOVITS, M
    [J]. COMBINATORICA, 1983, 3 (01) : 83 - 93
  • [7] Configuring Random Graph Models with Fixed Degree Sequences
    Fosdick, Bailey K.
    Larremore, Daniel B.
    Nishimura, Joel
    Ugander, Johan
    [J]. SIAM REVIEW, 2018, 60 (02) : 315 - 355
  • [8] Henk M., 1997, CRC DISCR MATH APPL, P243
  • [9] ARITHMETIC ASPECTS OF SYMMETRIC EDGE POLYTOPES
    Higashitani, Akihiro
    Jochemko, Katharina
    Michalek, Mailusz
    [J]. MATHEMATIKA, 2019, 65 (03) : 763 - 784
  • [10] Smooth Fano polytopes arising from finite directed graphs
    Higashitani, Akihiro
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2015, 55 (03) : 579 - 592