A two-step estimator for multilevel latent class analysis with covariates

被引:7
|
作者
Di Mari, Roberto [1 ,5 ]
Bakk, Zsuzsa [2 ]
Oser, Jennifer [3 ]
Kuha, Jouni [4 ]
机构
[1] Univ Catania, Catania, Italy
[2] Leiden Univ, Leiden, Netherlands
[3] Ben Gurion Univ Negev, Beer Sheva, Israel
[4] London Sch Econ & Polit Sci, London, England
[5] Univ Catania, Dept Econ & Business, Corso Italia 55, I-95128 Catania, Italy
基金
欧洲研究理事会;
关键词
multilevel latent class analysis; covariates; stepwise estimators; pseudo ML; MAXIMUM-LIKELIHOOD-ESTIMATION; CITIZENSHIP NORMS; MIXTURE-MODELS; MARKOV-MODELS; ADOLESCENTS; SAMPLE; EVOLUTION; VARIABLES;
D O I
10.1007/s11336-023-09929-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.
引用
收藏
页码:1144 / 1170
页数:27
相关论文
共 50 条
  • [21] Finite sample properties of the two-step empirical likelihood estimator
    Guggenberger, P
    Hahn, J
    ECONOMETRIC REVIEWS, 2005, 24 (03) : 247 - 263
  • [22] Satellite attitude estimation using a two-step optimal estimator
    Kasdin, NJ
    Weaver, TJM
    GUIDANCE AND CONTROL 2002, 2002, 111 : 15 - 34
  • [23] Robust Misspecification Tests for the Heckman's Two-Step Estimator
    Montes-Rojas, Gabriel V.
    ECONOMETRIC REVIEWS, 2011, 30 (02) : 154 - 172
  • [24] Two-step optimal estimator for three dimensional target tracking
    Gurfil, P
    Kasdin, NJ
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 209 - 214
  • [25] Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients
    Benassi, Mariagrazia
    Garofalo, Sara
    Ambrosini, Federica
    Sant'Angelo, Rosa Patrizia
    Raggini, Roberta
    De Paoli, Giovanni
    Ravani, Claudio
    Giovagnoli, Sara
    Orsoni, Matteo
    Piraccini, Giovanni
    FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [26] A PRACTICAL ASYMPTOTIC VARIANCE ESTIMATOR FOR TWO-STEP SEMIPARAMETRIC ESTIMATORS
    Ackerberg, Daniel
    Chen, Xiaohong
    Hahn, Jinyong
    REVIEW OF ECONOMICS AND STATISTICS, 2012, 94 (02) : 481 - 498
  • [27] Identifiability of Latent Class Models with Covariates
    Jing Ouyang
    Gongjun Xu
    Psychometrika, 2022, 87 : 1343 - 1360
  • [28] Identifiability of Latent Class Models with Covariates
    Jing Ouyang
    Xu, Gongjun
    PSYCHOMETRIKA, 2022, 87 (04) : 1343 - 1360
  • [29] Using Two-Step Cluster Analysis and Latent Class Analysis to Construct a Typology of Internet Users Among Community-Dwelling Older People
    Campens, Jorrit
    Vercruyssen, Anina
    De Keyzer, Willem
    De Witte, Nico
    JOURNAL OF GERONTOLOGICAL SOCIAL WORK, 2024, 67 (06): : 803 - 824
  • [30] Two-Step Matrix Application for the Enhancement and Imaging of Latent Fingermarks
    Ferguson, L.
    Bradshaw, R.
    Wolstenholme, R.
    Clench, M.
    Francese, S.
    ANALYTICAL CHEMISTRY, 2011, 83 (14) : 5585 - 5591