Rayleigh phase velocity and azimuthal anisotropy from ambient noise data in the Sanjiang lateral collision zone in the SE margin of the Tibetan plateau

被引:2
作者
Tian, Jianhui [1 ,2 ]
Gao, Yuan [2 ]
Li, Ying [2 ,3 ]
机构
[1] China Earthquake Adm, Inst Geophys, Beijing 100081, Peoples R China
[2] China Earthquake Adm, Inst Earthquake Forecasting, Key Lab Earthquake Predict, Beijing 100036, Peoples R China
[3] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
SE margin of the Tibetan Plateau; Sanjiang lateral collision zone; Rayleigh wave; Phase velocity; Azimuthal anisotropy; LARGE IGNEOUS PROVINCE; SURFACE-WAVE DISPERSION; REHAI GEOTHERMAL-FIELD; CRUSTAL STRUCTURE; SEISMIC ANISOTROPY; UPPER-MANTLE; SOUTHWEST CHINA; SOUTHEASTERN MARGIN; 2-STATION ANALYSIS; ARRAY TOMOGRAPHY;
D O I
10.4401/ag-8874
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Sanjiang lateral collision zone in the SE margin of the Tibetan Plateau is located at the east edge of the junction of the Eurasian and Indian plates. Using the continuous seismic waveforms recorded by 146 temporary and 21 permanent seismic stations in the study area, we obtain Rayleigh wave phase velocity and azimuthal anisotropy for periods 2 s to 40 s from the surface wave direct tomography method. This direct tomography method can obtain finer high-resolution results than the traditional surface wave tomography. Our results show that the low-velocity anomalies are found beneath the Lijiang-Xiaojinhe fault (LXF), Red River fault (RRF), Chuxiong fault and Tengchong volcanoes, the high-velocity anomalies are in the region of Weixi and Panzhihua at periods 5 - 8 s. The fast velocity directions mainly align N-S. At periods 10 - 15 s, the distributions of low-velocity anomalies are consistent with the strikes of LXF and RRF. At periods 20 - 35 s, the high- and low-velocity anomalies are bounded by the RRF, which may imply the fault is divided by the thick crust (indicated by low-velocity anomalies) and the thin crust with shallow mantle (indicated by high-velocity anomalies). The fast velocity directions at the periods 10 - 35 s rotate clockwise from north to south of the study area. The intensity of anisotropy in the low-velocity zone is stronger than that in the high-velocity zone, and the intensity in the north of the study area is stronger than that in the south. Results indicate the source of anisotropy may be different in each subzone.
引用
收藏
页数:21
相关论文
共 92 条
  • [1] Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging
    Bai, Denghai
    Unsworth, Martyn J.
    Meju, Max A.
    Ma, Xiaobing
    Teng, Jiwen
    Kong, Xiangru
    Sun, Yi
    Sun, Jie
    Wang, Lifeng
    Jiang, Chaosong
    Zhao, Ciping
    Xiao, Pengfei
    Liu, Mei
    [J]. NATURE GEOSCIENCE, 2010, 3 (05) : 358 - 362
  • [2] Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China
    Bai, DH
    Meju, MA
    Liao, ZJ
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2001, 147 (03) : 677 - 687
  • [3] Bai Z. M., 2003, ACTA SEISMOL SIN, V16, P127
  • [4] Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions
    Bao, Xuewei
    Sun, Xiaoxiao
    Xu, Mingjie
    Eaton, David W.
    Song, Xiaodong
    Wang, Liangshu
    Ding, Zhifeng
    Mi, Ning
    Li, Hua
    Yu, Dayong
    Huang, Zhouchuan
    Wang, Pan
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2015, 415 : 16 - 24
  • [5] A QUANTITATIVE-EVALUATION OF THE CONTRIBUTION OF CRUSTAL ROCKS TO THE SHEAR-WAVE SPLITTING OF TELESEISMIC SKS WAVES
    BARRUOL, G
    MAINPRICE, D
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1993, 78 (3-4) : 281 - 300
  • [6] Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements
    Bensen, G. D.
    Ritzwoller, M. H.
    Barmin, M. P.
    Levshin, A. L.
    Lin, F.
    Moschetti, M. P.
    Shapiro, N. M.
    Yang, Y.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (03) : 1239 - 1260
  • [7] Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau revealed by Pms splitting
    Cai, Yan
    Wu, Jianping
    Fang, Lihua
    Wang, Weilai
    Yi, Shuang
    [J]. JOURNAL OF ASIAN EARTH SCIENCES, 2016, 121 : 120 - 126
  • [8] Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China
    Chang Li-Jun
    Ding Zhi-Feng
    Wang Chun-Yong
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2015, 58 (11): : 4052 - 4067
  • [9] Low velocity crustal flow and crust-mantle coupling mechanism in Yunnan, SE Tibet, revealed by 3D S-wave velocity and azimuthal anisotropy
    Chen, Haopeng
    Zhu, Liangbao
    Su, Youjin
    [J]. TECTONOPHYSICS, 2016, 685 : 8 - 20
  • [10] Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography
    Chen, Min
    Huang, Hui
    Yao, Huajian
    van der Hilst, Rob
    Niu, Fenglin
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (02) : 334 - 340