Artificial Intelligence for Image Analysis in Oral Squamous Cell Carcinoma: A Review

被引:9
作者
Pereira-Prado, Vanesa [1 ]
Martins-Silveira, Felipe [1 ]
Sicco, Estafania [1 ]
Hochmann, Jimena [1 ]
Isiordia-Espinoza, Mario Alberto [2 ]
Gonzalez, Rogelio Gonzalez [3 ]
Pandiar, Deepak [4 ]
Bologna-Molina, Ronell [1 ,3 ]
机构
[1] Univ Republica, Sch Dent, Mol Pathol Area, Montevideo 11400, Uruguay
[2] Univ Guadalajara, Inst Res Med Sci, Los Altos Univ Ctr, Dept Clin, Guadalajara 44100, Mexico
[3] Univ Juarez Estado Durango, Sch Dent, Res Dept, Durango 34000, Mexico
[4] Saveetha Dent Coll & Hosp, Dept Oral Pathol & Microbiol, Chennai 600077, India
关键词
artificial intelligence; deep learning; digital image; histopathological analysis; machine learning; oral squamous cell carcinoma; SEGMENTATION; DIAGNOSIS;
D O I
10.3390/diagnostics13142416
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Head and neck tumor differential diagnosis and prognosis have always been a challenge for oral pathologists due to their similarities and complexity. Artificial intelligence novel applications can function as an auxiliary tool for the objective interpretation of histomorphological digital slides. In this review, we present digital histopathological image analysis applications in oral squamous cell carcinoma. A literature search was performed in PubMed MEDLINE with the following keywords: "artificial intelligence" OR "deep learning" OR "machine learning" AND "oral squamous cell carcinoma". Artificial intelligence has proven to be a helpful tool in histopathological image analysis of tumors and other lesions, even though it is necessary to continue researching in this area, mainly for clinical validation.
引用
收藏
页数:13
相关论文
共 60 条
  • [1] Abdulhamit S., 2020, MACHINE LEARNING TEC, P91, DOI [10.1016/B978-0-12-821379-7.00003-5, DOI 10.1016/B978-0-12-821379-7.00003-5, 10.1016/b978-0-12-821379-7.00003-5]
  • [2] Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review
    Alabi, Rasheed Omobolaji
    Youssef, Omar
    Pirinen, Matti
    Elmusrati, Mohammed
    Makitie, Antti A.
    Leivo, Ilmo
    Almangush, Alhadi
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 115
  • [3] Diagnosing Melanomas in Dermoscopy Images Using Deep Learning
    Alwakid, Ghadah
    Gouda, Walaa
    Humayun, Mamoona
    Jhanjhi, N. Z.
    [J]. DIAGNOSTICS, 2023, 13 (10)
  • [4] Deep Machine Learning-A New Frontier in Artificial Intelligence Research
    Arel, Itamar
    Rose, Derek C.
    Karnowski, Thomas P.
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) : 13 - 18
  • [5] Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
    Arganda-Carreras, Ignacio
    Kaynig, Verena
    Rueden, Curtis
    Eliceiri, Kevin W.
    Schindelin, Johannes
    Cardona, Albert
    Seung, H. Sebastian
    [J]. BIOINFORMATICS, 2017, 33 (15) : 2424 - 2426
  • [6] LABKIT: Labeling and Segmentation Toolkit for Big Image Data
    Arzt, Matthias
    Deschamps, Joran
    Schmied, Christopher
    Pietzsch, Tobias
    Schmidt, Deborah
    Tomancak, Pavel
    Haase, Robert
    Jug, Florian
    [J]. FRONTIERS IN COMPUTER SCIENCE, 2022, 4
  • [7] RETRACTED: Artificial Neural Network Assisted Cancer Risk Prediction of Oral Precancerous Lesions (Retracted Article)
    Chen, Wenao
    Zeng, Ruijie
    Jin, Yiyao
    Sun, Xi
    Zhou, Zihan
    Zhu, Chao
    [J]. BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [8] Automated identification of keratinization and keratin pearl area from in situ oral histological images
    Das, Dev Kumar
    Chakraborty, Chandan
    Sawaimoon, Satyakam
    Maiti, Asok Kumar
    Chatterjee, Sanjoy
    [J]. TISSUE & CELL, 2015, 47 (04) : 349 - 358
  • [9] Das Madhusmita, 2023, Int J Environ Res Public Health, V20, DOI 10.3390/ijerph20032131
  • [10] Accuracy of artificial intelligence-assisted detection of Oral Squamous Cell Carcinoma: A systematic review and meta-analysis
    Elmakaty, Ibrahim
    Elmarasi, Mohamed
    Amarah, Ahmed
    Abdo, Ruba
    Malki, Mohammed Imad
    [J]. CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2022, 178