The Proton and Occam's Razor

被引:1
作者
Vassallo, Giorgio [1 ]
Kovacs, Andras [2 ]
机构
[1] Univ Palermo, Dipartimento Ingn, Palermo, Italy
[2] BroadBit Energy Technol, Espoo, Finland
来源
13TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, IARD 2022 | 2023年 / 2482卷
关键词
Aharonov-Bohm electrodynamics; magnetic flux quanta; nuclear anapole moment; Occam's razor; proton model; unified field theory; vector potential; Zitterbewegung; HYDROGEN;
D O I
10.1088/1742-6596/2482/1/012020
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Otto Stern's 1933 measurement of the unexpectedly large proton magnetic moment indicated to most physicists that the proton is not a point particle. At that time, many physicists modeled elementary particles as point particles, and therefore Stern's discovery initiated the speculation that the proton might be a composite particle. In this work, we show that despite being an elementary particle, the proton is an extended particle. Our work is motivated by the experimental data, which we review in section 1. By applying Occam's Razor principle, we identify a simple proton structure that explains the origin of its principal parameters. Our model uses only relativistic and electromagnetic concepts, highlighting the primary role of the electromagnetic potentials and of the magnetic flux quantum Phi(M) = (h)/(e): Unlike prior proton models, our methodology does not violate Maxwell's equation, Noether's theorem, or the Pauli exclusion principle. Considering that the proton has an anapole (toroidal) magnetic moment, we propose that the proton is a spherical shaped charge that moves at the speed of light along a path that encloses a toroidal volume. A magnetic flux quantum Phi(M) = (h)/(e) stabilizes the proton's charge trajectory. The two curvatures of the toroidal and poloidal current loops are determined by the magnetic forces associated with Phi(M). We compare our calculations against experimental data.
引用
收藏
页数:25
相关论文
共 42 条
[21]  
Kovacs A., 2022, WORLD SCI
[22]  
Kovacs A., 2023, J PHYS C SERIES
[23]  
Kuhn S. E., 1998, Proceedings of the 12th HUGS at CEBAF. Themes in Strong Interactions, P231
[24]   INELASTIC LEPTON-NUCLEON SCATTERING AND LEPTON PAIR PRODUCTION IN RELATIVISTIC QUARK-PARTON MODEL [J].
KUTI, J ;
WEISSKOPF, VF .
PHYSICAL REVIEW D, 1971, 4 (11) :3418-+
[25]   Measured proton electromagnetic structure deviates from theoretical predictions [J].
Li, R. ;
Sparveris, N. ;
Atac, H. ;
Jones, M. K. ;
Paolone, M. ;
Akbar, Z. ;
Gayoso, C. Ayerbe ;
Berdnikov, V ;
Biswas, D. ;
Boer, M. ;
Camsonne, A. ;
Chen, J-P ;
Diefenthaler, M. ;
Duran, B. ;
Dutta, D. ;
Gaskell, D. ;
Hansen, O. ;
Hauenstein, F. ;
Heinrich, N. ;
Henry, W. ;
Horn, T. ;
Huber, G. M. ;
Jia, S. ;
Joosten, S. ;
Karki, A. ;
Kay, S. J. D. ;
Kumar, V ;
Li, X. ;
Li, W. B. ;
Liyanage, A. H. ;
Malace, S. ;
Markowitz, P. ;
McCaughan, M. ;
Meziani, Z-E ;
Mkrtchyan, H. ;
Morean, C. ;
Muhoza, M. ;
Narayan, A. ;
Pasquini, B. ;
Rehfuss, M. ;
Sawatzky, B. ;
Smith, G. R. ;
Smith, A. ;
Trotta, R. ;
Yero, C. ;
Zheng, X. ;
Zhou, J. .
NATURE, 2022, 611 (7935) :265-+
[26]   New Insights into the Nucleon's Electromagnetic Structure [J].
Lin, Yong-Hui ;
Hammer, Hans-Werner ;
Meissner, Ulf-G. .
PHYSICAL REVIEW LETTERS, 2022, 128 (05)
[27]   Dispersion theory of proton Compton scattering in the first and second resonance regions [J].
Lvov, AI ;
Petrunkin, VA ;
Schumacher, M .
PHYSICAL REVIEW C, 1997, 55 (01) :359-377
[28]  
Mills R. L., 1992, UNIFICATION SPACETIM
[29]   Generalized Maxwell equations and charge conservation censorship [J].
Modanese, G. .
MODERN PHYSICS LETTERS B, 2017, 31 (06)
[30]  
MODANESE G., 2018, UNIFIED FIELD MECH