Suppressing quantum errors by scaling a surface code logical qubit

被引:398
|
作者
Acharya, Rajeev [1 ]
Aleiner, Igor [1 ,2 ]
Allen, Richard [1 ]
Andersen, Trond I. [1 ]
Ansmann, Markus [1 ]
Arute, Frank [1 ]
Arya, Kunal [1 ]
Asfaw, Abraham [1 ]
Atalaya, Juan [1 ]
Babbush, Ryan [1 ]
Bacon, Dave [1 ]
Bardin, Joseph C. [1 ,3 ]
Basso, Joao [1 ]
Bengtsson, Andreas [1 ]
Boixo, Sergio [1 ]
Bortoli, Gina [1 ]
Bourassa, Alexandre [1 ]
Bovaird, Jenna [1 ]
Brill, Leon [1 ]
Broughton, Michael [1 ]
Buckley, Bob B. [1 ]
Buell, David A. [1 ]
Burger, Tim [1 ]
Burkett, Brian [1 ]
Bushnell, Nicholas [1 ]
Chen, Yu [1 ]
Chen, Zijun [1 ]
Chiaro, Ben [1 ]
Cogan, Josh [1 ]
Collins, Roberto [1 ]
Conner, Paul [1 ]
Courtney, William [1 ]
Crook, Alexander L. [1 ]
Curtin, Ben [1 ]
Debroy, Dripto M. [1 ]
Barba, Alexander Del Toro [1 ]
Demura, Sean [1 ]
Dunsworth, Andrew [1 ]
Eppens, Daniel [1 ]
Erickson, Catherine [1 ]
Faoro, Lara [1 ]
Farhi, Edward [1 ]
Fatemi, Reza [1 ]
Burgos, Leslie Flores [1 ]
Forati, Ebrahim [1 ]
Fowler, Austin G. [1 ]
Foxen, Brooks [1 ]
Giang, William [1 ]
Gidney, Craig [1 ]
Gilboa, Dar [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[3] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[4] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[5] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Commun Technol, Ctr Quantum Software & Informat, Sydney, NSW, Australia
[6] CALTECH, Inst Quantum Informat & Matter, Dept Phys, Pasadena, CA 91125 USA
[7] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[8] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[9] USRA Res Inst Adv Comp Sci, Mountain View, CA USA
[10] NASA Ames Res Ctr, QuAIL, Mountain View, CA USA
[11] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[12] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
基金
美国国家航空航天局;
关键词
COMPUTATION; STATES;
D O I
10.1038/s41586-022-05434-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Practical quantum computing will require error rates well below those achievable with physical qubits. Quantum error correction(1,2) offers a path to algorithmically relevant error rates by encoding logical qubits within many physical qubits, for which increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low for logical performance to improve with increasing code size. Here we report the measurement of logical qubit performance scaling across several code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find that our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, in terms of both logical error probability over 25 cycles and logical error per cycle ((2.914 +/- 0.016)% compared to (3.028 +/- 0.023)%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7x10(-6) logical error per cycle floor set by a single high-energy event (1.6x10(-7) excluding this event). We accurately model our experiment, extracting error budgets that highlight the biggest challenges for future systems. These results mark an experimental demonstration in which quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.
引用
收藏
页码:676 / +
页数:7
相关论文
共 50 条
  • [2] Qubit-qubit interaction in quantum computers: errors and scaling laws
    Gea-Banacloche, J
    PHOTONIC QUANTUM COMPUTING II, 1998, 3385 : 64 - 71
  • [3] Logical qubit behavior model and fast simulation for surface code
    Oh, Soo-Cheol
    Cha, Gyu-Il
    QUANTUM INFORMATION PROCESSING, 2023, 22 (07)
  • [4] Logical qubit behavior model and fast simulation for surface code
    Soo-Cheol Oh
    Gyu-Il Cha
    Quantum Information Processing, 22
  • [5] Logical Zeros for the Seven-Qubit Quantum Error Correction Code
    Gilbert, G.
    Weinstein, Y. S.
    QUANTUM INFORMATION AND COMPUTATION IX, 2011, 8057
  • [6] Logical-qubit operations in an error-detecting surface code
    Marques, J. F.
    Varbanov, B. M.
    Moreira, M. S.
    Ali, H.
    Muthusubramanian, N.
    Zachariadis, C.
    Battistel, F.
    Beekman, M.
    Haider, N.
    Vlothuizen, W.
    Bruno, A.
    Terhal, B. M.
    DiCarlo, L.
    NATURE PHYSICS, 2022, 18 (01) : 80 - +
  • [7] Logical-qubit operations in an error-detecting surface code
    J. F. Marques
    B. M. Varbanov
    M. S. Moreira
    H. Ali
    N. Muthusubramanian
    C. Zachariadis
    F. Battistel
    M. Beekman
    N. Haider
    W. Vlothuizen
    A. Bruno
    B. M. Terhal
    L. DiCarlo
    Nature Physics, 2022, 18 : 80 - 86
  • [8] Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code
    Fowler, Austin G.
    Martinis, John M.
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [9] Experimental Implementation of Encoded Logical Qubit Operations in a Perfect Quantum Error Correcting Code
    Zhang, Jingfu
    Laflamme, Raymond
    Suter, Dieter
    PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [10] Passive correction of quantum logical errors in a driven, dissipative system: A blueprint for an analog quantum code fabric
    Kapit, Eliot
    Chalker, John T.
    Simon, Steven H.
    PHYSICAL REVIEW A, 2015, 91 (06):