Modifying PTAA/Perovskite Interface via 4-Butanediol Ammonium Bromide for Efficient and Stable Inverted Perovskite Solar Cells

被引:14
作者
Li, Yang [1 ,2 ]
Zhang, Lixin [1 ,2 ]
Xia, Junming [3 ]
Liu, Tanghao [4 ]
Wang, Kaiyang [5 ]
机构
[1] Shihezi Univ, Bingtuan Energy Dev Inst, 280 Beisi Rd, Shihezi City 832000, Peoples R China
[2] Shihezi Univ, Key Lab Adv Energy Storage Mat & Technol, Shihezi City 832000, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Joint Key Lab, Minist Educ, Macau 999078, Peoples R China
[4] Hong Kong Baptist Univ, Dept Phys, 224 Waterloo Rd, Hong Kong 999077, Peoples R China
[5] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Micronano Optoelect Informat Syst, Shenzhen 518055, Peoples R China
关键词
interfaces; inverted perovskite solar cells; PTAA; stability; wettability; STABILITY;
D O I
10.1002/smll.202208243
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inverted perovskite solar cells (IPSCs) have witnessed an impressive development in recent years. However, their efficiency is still significantly behind theoretical limits, and device instabilities hinder their commercialization. Two main obstacles to further enhancing their performance via one-step deposition are: 1) the unsatisfactory film quality of perovskite and 2) the poor surface contact. To address the above issues, 4-butanediol ammonium Bromide (BD) is utilized to passivate Pb2+ defects by forming Pb-N bonds and fill vacancies of formamidinium ions at the buried surface of perovskite. The wettability of poly [bis (4-phenyl) (2,4,6-triMethylphenyl) amine] films is also improved due to the formation of hydrogen bonds between PTAA and BD molecules, resulting in better surface contacts and enhanced perovskite crystallinity. As a result, BD-modified perovskite thin films show a significant increase in the mean grain size, as well as a dramatic enhancement in the PL decay lifetime. The BD-treated device exhibits an efficiency of up to 21.26%, considerably higher than the control device. Moreover, the modified devices show dramatically enhanced thermal and ambient stability compared to the control ones. This methodology paves the way to obtain high-quality perovskite films for fabricating high-performance IPSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Regulating the perovskite/C60 interface via a bifunctional interlayer for efficient inverted perovskite solar cells
    Chen, Chuanlu
    Zhu, Pengchen
    Dong, Xiaorui
    Dou, Yunjie
    Zhang, Yuzhen
    Liang, Jie
    Mao, Ruiqi
    Jiang, Yi
    Wang, Jingyang
    Wang, Minhuan
    Chen, Shangshang
    Zhu, Jia
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [32] Ion Compensation of Buried Interface Enables Highly Efficient and Stable Inverted MA-Free Perovskite Solar Cells
    Chen, Yu
    Shen, Yang
    Tang, Weijian
    Wu, Yihui
    Luo, Weidong
    Yuan, Ningyi
    Ding, Jianning
    Zhang, Shengli
    Zhang, Wen-Hua
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)
  • [33] Multifunctional Additive (L-4-Fluorophenylalanine) for Efficient and Stable Inverted Perovskite Solar Cells
    Yang, Jiabao
    Pu, Xingyu
    Wang, Tong
    Cheng, Shuaici
    Chen, Hui
    Cao, Qi
    Zhang, Yixin
    Tojiboyev, Ilhom
    Etgar, Lioz
    Salari, Hadi
    Ye, Fei
    Li, Xuanhua
    [J]. SOLAR RRL, 2022, 6 (08)
  • [34] Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells
    Zhang, Jiaqi
    Long, Juan
    Huang, Zengqi
    Yang, Jia
    Li, Xiang
    Dai, Runying
    Sheng, Wangping
    Tan, Licheng
    Chen, Yiwang
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [35] Thermally and Air Stable Perovskite Solar Cells with a Hole Transporting PTAA/NiO Bilayer
    Lee, You-Sun
    Kwon, Sung-Nam
    Na, Seok-In
    Kim, Dohyung
    Kim, Sang-Woo
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [36] Efficient Inverted Perovskite Solar Cells via Improved Sequential Deposition
    Chen, Peng
    Xiao, Yun
    Li, Lei
    Zhao, Lichen
    Yu, Maotao
    Li, Shunde
    Hu, Juntao
    Liu, Bin
    Yang, Yingguo
    Luo, Deying
    Hou, Cheng-Hung
    Guo, Xugang
    Shyue, Jing-Jong
    Lu, Zheng-Hong
    Gong, Qihuang
    Snaith, Henry J. J.
    Zhu, Rui
    [J]. ADVANCED MATERIALS, 2023, 35 (05)
  • [37] Suppressing Oxidation at Perovskite-NiOx Interface for Efficient and Stable Tin Perovskite Solar Cells
    Li, Bo
    Zhang, Chunlei
    Gao, Danpeng
    Sun, Xianglang
    Zhang, Shoufeng
    Li, Zhen
    Gong, Jianqiu
    Li, Shuai
    Zhu, Zonglong
    [J]. ADVANCED MATERIALS, 2024, 36 (17)
  • [38] Buried Interface Passivation with 3,4,5-Trifluorophenylboronic Acid Enables Efficient and Stable Inverted Perovskite Solar Cells
    Yang, Jiansheng
    Zhao, Zhenhua
    Ding, Changzeng
    Zhang, Lianping
    Gao, Xiaomei
    Huang, Rong
    Li, Zhiyun
    Luo, Qun
    Fan, Bin
    Tian, Qingyong
    Yan, Lingpeng
    Guo, Kunpeng
    Yang, Yongzhen
    Ma, Chang-Qi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (11) : 16844 - 16854
  • [39] Enhanced anchoring enables highly efficient and stable inverted perovskite solar cells
    Yin, Ran
    Wu, Rongfei
    Miao, Wenjing
    Wang, Kexiang
    Sun, Weiwei
    Huo, Xiaonan
    Sun, Yansheng
    You, Tingting
    Hao, Weichang
    Yin, Penggang
    [J]. NANO ENERGY, 2024, 125
  • [40] Enhancing Interfacial Contact for Efficient and Stable Inverted Perovskite Solar Cells and Modules
    Tan, Zhengtian
    Liu, Wenguang
    Chen, Rui
    Liu, Sanwan
    Zhou, Qisen
    Wang, Jianan
    Ren, Fumeng
    Cai, Yong
    Shi, Chenyang
    Liu, Xiaoxuan
    Zhou, Zheng
    Zhu, He
    Miao, Tianyin
    Li, Wenpei
    Wang, Mingkui
    Liu, Zonghao
    Chen, Wei
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2025,