Modifying PTAA/Perovskite Interface via 4-Butanediol Ammonium Bromide for Efficient and Stable Inverted Perovskite Solar Cells

被引:14
|
作者
Li, Yang [1 ,2 ]
Zhang, Lixin [1 ,2 ]
Xia, Junming [3 ]
Liu, Tanghao [4 ]
Wang, Kaiyang [5 ]
机构
[1] Shihezi Univ, Bingtuan Energy Dev Inst, 280 Beisi Rd, Shihezi City 832000, Peoples R China
[2] Shihezi Univ, Key Lab Adv Energy Storage Mat & Technol, Shihezi City 832000, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Joint Key Lab, Minist Educ, Macau 999078, Peoples R China
[4] Hong Kong Baptist Univ, Dept Phys, 224 Waterloo Rd, Hong Kong 999077, Peoples R China
[5] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Micronano Optoelect Informat Syst, Shenzhen 518055, Peoples R China
关键词
interfaces; inverted perovskite solar cells; PTAA; stability; wettability; STABILITY;
D O I
10.1002/smll.202208243
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inverted perovskite solar cells (IPSCs) have witnessed an impressive development in recent years. However, their efficiency is still significantly behind theoretical limits, and device instabilities hinder their commercialization. Two main obstacles to further enhancing their performance via one-step deposition are: 1) the unsatisfactory film quality of perovskite and 2) the poor surface contact. To address the above issues, 4-butanediol ammonium Bromide (BD) is utilized to passivate Pb2+ defects by forming Pb-N bonds and fill vacancies of formamidinium ions at the buried surface of perovskite. The wettability of poly [bis (4-phenyl) (2,4,6-triMethylphenyl) amine] films is also improved due to the formation of hydrogen bonds between PTAA and BD molecules, resulting in better surface contacts and enhanced perovskite crystallinity. As a result, BD-modified perovskite thin films show a significant increase in the mean grain size, as well as a dramatic enhancement in the PL decay lifetime. The BD-treated device exhibits an efficiency of up to 21.26%, considerably higher than the control device. Moreover, the modified devices show dramatically enhanced thermal and ambient stability compared to the control ones. This methodology paves the way to obtain high-quality perovskite films for fabricating high-performance IPSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Defect passivation and interface modification by tetra-n-octadecyl ammonium bromide for efficient and stable inverted perovskite solar cells
    Liu, Weizhi
    Xiong, Jian
    Liu, Naihe
    Dai, Junqian
    Dai, Zhongjun
    Huang, Yu
    Zhang, Zheling
    Xue, Xiaogang
    Dai, Qilin
    Zhang, Jian
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [2] Multifunctional Ruthenium Dye Assists PTAA-Based Inverted Perovskite Solar Cells
    Hao, Kun
    Jiang, Jun
    Wang, Xianzhao
    Liu, Ziyan
    Liu, Xuelian
    Zhou, Mi
    Wang, Xiao-Feng
    ACS APPLIED MATERIALS & INTERFACES, 2025, : 22698 - 22705
  • [3] Interface Modification for Efficient and Stable Inverted Inorganic Perovskite Solar Cells
    Xu, Tianfei
    Xiang, Wanchun
    Yang, Junjie
    Kubicki, Dominik J. J.
    Tress, Wolfgang
    Chen, Tao
    Fang, Zhimin
    Liu, Yali
    Liu, Shengzhong
    ADVANCED MATERIALS, 2023, 35 (31)
  • [4] π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells
    Chen, Hui
    Yang, Jiabao
    Cao, Qi
    Wang, Tong
    Pu, Xingyu
    He, Xilai
    Chen, Xingyuan
    Li, Xuanhua
    NANO ENERGY, 2023, 117
  • [5] Interface contact optimization and defect passivation via tyramine hydrochloride for efficient and stable inverted perovskite solar cells
    Luo, Shizi
    Cao, Shuguang
    Bi, Zhuoneng
    Zheng, Yupeng
    Tauqeer, Haider Ali
    Zhuo, Yuling
    Ozerova, Victoria V.
    Emelianov, Nikita A.
    Slesarenko, Nikita A.
    Frolova, Lyubov A.
    Gutsev, Lavrenty G.
    Ramachandran, Bala R.
    Gutsev, Gennady L.
    Troshin, Pavel A.
    Xu, Xueqing
    NANO ENERGY, 2025, 139
  • [6] Dimensional Engineering in Efficient and Stable Inverted Perovskite Solar Cells
    Zhu, Qing
    Yu, Yue
    Liu, Xinxing
    He, Dongmei
    Shai, Xuxia
    Feng, Jing
    Yi, Jianhong
    Chen, Jiangzhao
    SOLAR RRL, 2024, 8 (17):
  • [7] Synergistic dual-interface modification strategy for highly reproducible and efficient PTAA-based inverted perovskite solar cells
    Dai, Junqian
    Xiong, Jian
    Liu, Naihe
    He, Zhen
    Zhang, Yongsong
    Zhan, Shiping
    Fan, Baojin
    Liu, Weizhi
    Huang, Xiaoying
    Hu, Xiaotian
    Wang, Dongjie
    Huang, Yu
    Zhang, Zheling
    Zhang, Jian
    CHEMICAL ENGINEERING JOURNAL, 2023, 453
  • [8] Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture
    Principe, Joana
    Duarte, Vera C. M.
    Andrade, Luisa
    ENERGY TECHNOLOGY, 2022, 10 (04)
  • [9] Suppressing surface and interface recombination to afford efficient and stable inverted perovskite solar cells
    He, Xiaolong
    Arain, Zulqarnain
    Liu, Cheng
    Yang, Yi
    Chen, Jianlin
    Zhang, Xianfu
    Huang, Jingsong
    Ding, Yong
    Liu, Xuepeng
    Dai, Songyuan
    NANOSCALE, 2024, 16 (36) : 17042 - 17048
  • [10] Modification of energy levels by cetyltrimethylammonium bromide at the perovskite/carbon interface for highly efficient and stable perovskite solar cells
    Shi, Zhuonan
    Li, Shina
    Min, Changli
    Xie, Junjie
    Ma, Ruixin
    ORGANIC ELECTRONICS, 2023, 112