Crystal Structure Assignment for Unknown Compounds from X-ray Diffraction Patterns with Deep Learning

被引:7
作者
Chen, Litao [1 ]
Wang, Bingxu [1 ]
Zhang, Wentao [1 ]
Zheng, Shisheng [1 ]
Chen, Zhefeng [1 ]
Zhang, Mingzheng [1 ]
Dong, Cheng [1 ]
Pan, Feng [1 ]
Li, Shunning [1 ]
机构
[1] Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
CLASSIFICATION;
D O I
10.1021/jacs.3c11852
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Determining the structures of previously unseen compounds from experimental characterizations is a crucial part of materials science. It requires a step of searching for the structure type that conforms to the lattice of the unknown compound, which enables the pattern matching process for characterization data, such as X-ray diffraction (XRD) patterns. However, this procedure typically places a high demand on domain expertise, thus creating an obstacle for computer-driven automation. Here, we address this challenge by leveraging a deep-learning model composed of a union of convolutional residual neural networks. The accuracy of the model is demonstrated on a dataset of over 60,000 different compounds for 100 structure types, and additional categories can be integrated without the need to retrain the existing networks. We also unravel the operation of the deep-learning black box and highlight the way in which the resemblance between the unknown compound and a structure type is quantified based on both local and global characteristics in XRD patterns. This computational tool opens new avenues for automating structure analysis on materials unearthed in high-throughput experimentation.
引用
收藏
页码:8098 / 8109
页数:12
相关论文
共 74 条
[1]   The rise of self-driving labs in chemical and materials sciences [J].
Abolhasani, Milad ;
Kumacheva, Eugenia .
NATURE SYNTHESIS, 2023, 2 (06) :483-492
[2]   Ranitidine hydrochloride X-ray assay using a neural network [J].
Agatonovic-Kustrin, S ;
Wu, V ;
Rades, T ;
Saville, D ;
Tucker, IG .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2000, 22 (06) :985-992
[3]   The 2019 materials by design roadmap [J].
Alberi, Kirstin ;
Nardelli, Marco Buongiorno ;
Zakutayev, Andriy ;
Mitas, Lubos ;
Curtarolo, Stefano ;
Jain, Anubhav ;
Fornari, Marco ;
Marzari, Nicola ;
Takeuchi, Ichiro ;
Green, Martin L. ;
Kanatzidis, Mercouri ;
Toney, Mike F. ;
Butenko, Sergiy ;
Meredig, Bryce ;
Lany, Stephan ;
Kattner, Ursula ;
Davydov, Albert ;
Toberer, Eric S. ;
Stevanovic, Vladan ;
Walsh, Aron ;
Park, Nam-Gyu ;
Aspuru-Guzik, Alan ;
Tabor, Daniel P. ;
Nelson, Jenny ;
Murphy, James ;
Setlur, Anant ;
Gregoire, John ;
Li, Hong ;
Xiao, Ruijuan ;
Ludwig, Alfred ;
Martin, Lane W. ;
Rappe, Andrew M. ;
Wei, Su-Huai ;
Perkins, John .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (01)
[4]   Challenges in direct-space structure determination from powder diffraction data:: A molecular material with four independent molecules in the asymmetric unit [J].
Albesa-Jové, D ;
Kariuki, BM ;
Kitchin, SJ ;
Grice, L ;
Cheung, EY ;
Harris, KDM .
CHEMPHYSCHEM, 2004, 5 (03) :414-418
[5]   The introduction of structure types into the inorganic crystal structure database ICSD [J].
Allmann, Rudolf ;
Hinek, Roland .
ACTA CRYSTALLOGRAPHICA SECTION A, 2007, 63 :412-417
[6]   EXPO2009: structure solution by powder data in direct and reciprocal space [J].
Altomare, Angela ;
Camalli, Mercedes ;
Cuocci, Corrado ;
Giacovazzo, Carmelo ;
Moliterni, Anna ;
Rizzi, Rosanna .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2009, 42 :1197-1202
[7]   Structure of the polymer electrolyte poly(ethylene oxide)(3): LiN(SO2CF3)(2) determined by powder diffraction using a powerful Monte Carlo approach [J].
Andreev, YG ;
Lightfoot, P ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 1996, (18) :2169-2170
[8]  
[Anonymous], 2014, RR-818-CMHSA
[9]  
Armbruster T., 2016, Highlights in Mineralogical Crystallography
[10]  
Ba J, 2014, ACS SYM SER