Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations

被引:7
作者
Pei, Lifang [1 ]
Wei, Yifan [2 ]
Zhang, Chaofeng [1 ]
Zhang, Jiwei [2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-time-step; BDF2; FEMs; Nonconforming element; Optimal error estimate; Superclose; Superconvergence; ERROR;
D O I
10.1007/s10915-024-02456-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an effective fully-discrete implicit scheme for solving linear reaction-diffusion equations is constructed by using the variable-time-step two-step backward differentiation formula (VSBDF2) in time combining with the nonconforming finite element methods in space. By introducing a modified energy projection operator, a discrete Laplace operator, the discrete orthogonal convolution kernels, we obtain the optimal and sharp error estimates of order O(h(2)+T-2) in L-2-norm and O(h + T-2) in H1 -norm under a mild restriction 0 < r(k) < r(max) approximate to 4.8645 for the ratio of adjacent time steps r(k.) Furthermore, with the help of a modified discrete Gronwall inequality and the combination technique of interpolation and projection operators, we achieved the superclose result between the interpolation function I(h)u and finite element solution u(h) in H-1 norm of order O(h + T-2) which together with the interpolation postprocessing operator Pi(2h) leads to the global superconvergence result about u - Pi(2h)u(h) in H-1 -norm of order O(h + T-2). Finally, numerical tests are provided to verify the theoretical analysis.
引用
收藏
页数:22
相关论文
共 44 条
[1]   A second order backward difference method with variable steps for a parabolic problem [J].
Becker, J .
BIT, 1998, 38 (04) :644-662
[2]   Two-level additive Schwarz preconditioners for nonconforming finite element methods [J].
Brenner, SC .
MATHEMATICS OF COMPUTATION, 1996, 65 (215) :897-921
[3]   Nonconforming FEM for the obstacle problem [J].
Carstensen, C. ;
Koehler, K. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) :64-93
[4]   Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes [J].
Chen, SC ;
Shi, DY ;
Zhao, YC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :77-95
[5]   A SECOND ORDER BDF NUMERICAL SCHEME WITH VARIABLE STEPS FOR THE CAHN-HILLIARD EQUATION [J].
Chen, Wenbin ;
Wang, Xiaoming ;
Yan, Yue ;
Zhang, Zhuying .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) :495-525
[6]  
Ciarlet P.G., 2002, Soc. For Ind. And Appl. Math, DOI DOI 10.1137/1.9780898719208
[7]   A variable time-step IMEX-BDF2 SAV scheme and its sharp error estimate for the Navier-Stokes equations [J].
Di, Yana ;
Ma, Yuheng ;
Shen, Jie ;
Zhang, Jiwei .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (03) :1143-1170
[8]   Sharp Error Estimate of an Implicit BDF2 Scheme with Variable Time Steps for the Phase Field Crystal Model [J].
Di, Yana ;
Wei, Yifan ;
Zhang, Jiwei ;
Zhao, Chengchao .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
[9]   Stability and error of the variable two-step BDF for semilinear parabolic problems [J].
Emmrich E. .
Journal of Applied Mathematics and Computing, 2005, 19 (1-2) :33-55
[10]   Superconvergence analysis of lower order anisotropic finite element [J].
Guo-Qing, Zhu ;
Dong-Yang, Shi ;
Shao-Chun, Chen .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (08) :1119-1130