Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions

被引:6
作者
Mandal, Sanju [1 ]
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
关键词
univalent functions; starlike functions; convex functions; bounded turning functions; Hankel determinant; logarithmic coefficients; Schwarz functions;
D O I
10.1007/s10986-024-09623-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hankel determinant H2,1Ff-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)$$\end{document} of logarithmic coefficients is defined asH2,1Ff-1/2:=Gamma 1 Gamma 2 Gamma 2 Gamma 3=Gamma 1 Gamma 3-Gamma 22,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right):=\left|\begin{array}{cc}{\Gamma }_{1}& {\Gamma }_{2}\\ {\Gamma }_{2}& {\Gamma }_{3}\end{array}\right|={\Gamma }_{1}{\Gamma }_{3}-{\Gamma }_{2}<^>{2},$$\end{document}where Gamma 1,Gamma 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{1},{\Gamma }_{2},$$\end{document} and Gamma 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{3}$$\end{document} are the first, second, and third logarithmic coefficients of inverse functions belonging to the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S}$$\end{document} of normalized univalent functions. In this paper, we establish sharp inequalities H2,1Ff-1/2 <= 19/288,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)\right|\le 19/288,$$\end{document}H2,1Ff-1/2 <= 1/144,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)\right|\le 1/144,$$\end{document} and H2,1Ff-1/2 <= 1/36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left|{H}_{\mathrm{2,1}}\left({F}_{f-1}/2\right)\right|\le 1/36$$\end{document} for the logarithmic coefficients of inverse functions, considering starlike and convex functions, as well as functions with bounded turning of order 1/2, respectively.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 31 条
[1]  
Ali M.F., 2018, CURR RES MATH COMPUT, P271
[2]   ON LOGARITHMIC COEFFICIENTS OF SOME CLOSE-TO-CONVEX FUNCTIONS [J].
Ali, Md Firoz ;
Vasudevarao, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) :1131-1142
[3]   On the Second Hankel Determinant of Logarithmic Coefficients for Certain Univalent Functions [J].
Allu, Vasudevarao ;
Arora, Vibhuti ;
Shaji, Amal .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
[4]   The variability range of the coefficients of the power series, which do not reach a given value [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1907, 64 :95-115
[5]   On the third logarithmic coefficient in some subclasses of close-to-convex functions [J].
Cho, Nak Eun ;
Kowalczyk, Bogumila ;
Kwon, Oh Sang ;
Lecko, Adam ;
Sim, Young Jae .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
[6]   A general approach to the Fekete-Szego problem [J].
Choi, Jae Ho ;
Kim, Yong Chan ;
Sugawa, Toshiyuki .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :707-727
[7]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[8]  
Duren P.L., 2001, Univalent functions, V259
[9]  
Girela D, 2000, ANN ACAD SCI FENN-M, V25, P337
[10]  
Goodman A. W., 1983, Univalent Functions, VI and II