Transcriptome Analysis Reveals Key Genes Involved in the Response of Pyrus betuleafolia to Drought and High-Temperature Stress

被引:3
|
作者
Ma, Panpan [1 ]
Guo, Guoling [1 ]
Xu, Xiaoqian [1 ]
Luo, Tingyue [1 ]
Sun, Yu [1 ]
Tang, Xiaomei [1 ]
Heng, Wei [1 ]
Jia, Bing [1 ]
Liu, Lun [1 ]
Kim, Nam-Soo
机构
[1] Anhui Agr Univ, Coll Hort, Hefei 230036, Peoples R China
来源
PLANTS-BASEL | 2024年 / 13卷 / 02期
关键词
Pyrus betuleafolia; transcriptome analysis; drought; high temperature; resistance; TOLERANCE; ACCUMULATION; ABA;
D O I
10.3390/plants13020309
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought and high-temperature stress are the main abiotic stresses that alone or simultaneously affect the yield and quality of pears worldwide. However, studies on the mechanisms of drought or high-temperature resistance in pears remain elusive. Therefore, the molecular responses of Pyrus betuleafolia, the widely used rootstock in pear production, to drought and high temperatures require further study. Here, drought- or high-temperature-resistant seedlings were selected from many Pyrus betuleafolia seedlings. The leaf samples collected before and after drought or high-temperature treatment were used to perform RNA sequencing analysis. For drought treatment, a total of 11,731 differentially expressed genes (DEGs) were identified, including 4444 drought-induced genes and 7287 drought-inhibited genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were more significantly enriched in plant hormone signal transduction, flavonoid biosynthesis, and glutathione metabolism. For high-temperature treatment, 9639 DEGs were identified, including 5493 significantly upregulated genes and 4146 significantly downregulated genes due to high-temperature stress. KEGG analysis showed that brassinosteroid biosynthesis, arginine metabolism, and proline metabolism were the most enriched pathways for high-temperature response. Meanwhile, the common genes that respond to both drought and high-temperature stress were subsequently identified, with a focus on responsive transcription factors, such as MYB, HSF, bZIP, and WRKY. These results reveal potential genes that function in drought or high-temperature resistance. This study provides a theoretical basis and gene resources for the genetic improvement and molecular breeding of pears.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Transcriptome analysis reveals key genes involved in the eggplant response to high-temperature stress
    Liu, Renjian
    Shu, Bingbing
    Wang, Yuyuan
    Yu, Bingwei
    Wang, Yixi
    Gan, Yuwei
    Liang, Yonggui
    Qiu, Zhengkun
    Yang, Jianguo
    Yan, Shuangshuang
    Cao, Bihao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 211
  • [2] Transcriptome Analysis Reveals Key Genes in Response to High-Temperature Stress in Rhododendron molle
    Wu, Linshi
    Liu, Yan
    Liu, Xinyun
    Li, Qiaoyun
    Yi, Xinyu
    Chen, Chan
    Wang, Ling
    Liao, Juyang
    BIORESOURCES, 2024, 19 (04): : 8238 - 8256
  • [3] Transcriptome Analysis Reveals Key Genes Involved in the Response of Triticum urartu to Boron Toxicity Stress
    Uyar, Gul Sema
    Pandey, Anamika
    Hamurcu, Mehmet
    Vyhnanek, Tomas
    Harmankaya, Mustafa
    Topal, Ali
    Gezgin, Sait
    Khan, Mohd. Kamran
    AGRONOMY-BASEL, 2025, 15 (01):
  • [4] Transcriptome analysis reveals key drought-stress-responsive genes in soybean
    Li, Mingqian
    Li, Hainan
    Sun, Anni
    Wang, Liwei
    Ren, Chuanyou
    Liu, Jiang
    Gao, Xining
    FRONTIERS IN GENETICS, 2022, 13
  • [5] Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties
    Niu, Yufei
    Li, Jingyu
    Sun, Fanting
    Song, Taiyu
    Han, Baojia
    Liu, Zijie
    Su, Peisen
    GENOMICS, 2023, 115 (05)
  • [6] Transcriptome Analysis Reveals Candidate Genes Involved in Low Temperature Stress in Bell Pepper
    Ji, L.
    Li, P.
    Su, Zh
    Li, M.
    Wang, H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2020, 67 (06) : 1116 - 1125
  • [7] Transcriptome Analysis Reveals Candidate Genes Involved in Low Temperature Stress in Bell Pepper
    L. Ji
    P. Li
    Zh. Su
    M. Li
    H. Wang
    Russian Journal of Plant Physiology, 2020, 67 : 1116 - 1125
  • [8] Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep
    Li, Y. X.
    Feng, X. P.
    Wang, H. L.
    Meng, C. H.
    Zhang, J.
    Qian, Y.
    Zhong, J. F.
    Cao, S. X.
    CELL STRESS & CHAPERONES, 2019, 24 (06): : 1045 - 1054
  • [9] Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep
    YX Li
    XP Feng
    HL Wang
    CH Meng
    J Zhang
    Y Qian
    JF Zhong
    SX Cao
    Cell Stress and Chaperones, 2019, 24 : 1045 - 1054
  • [10] Transcriptome and metabolome analysis reveals key genes and secondary metabolites of Casuarina equisetifolia ssp. incana in response to drought stress
    Zhang, Shike
    He, Chunmei
    Wei, Long
    Jian, Shuguang
    Liu, Nan
    BMC PLANT BIOLOGY, 2023, 23 (01)