The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds

被引:3
作者
Wang, Zixin [1 ,2 ]
Zhou, Wenjin [1 ,2 ]
Yang, Min [1 ,2 ]
Yang, Yong [1 ,2 ]
Hu, Jianyong [1 ,2 ]
Qin, Chengbing [1 ,2 ]
Zhang, Guofeng [1 ,2 ]
Liu, Shaoding [3 ]
Chen, Ruiyun [1 ,2 ]
Xiao, Liantuan [1 ,2 ,4 ]
机构
[1] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[3] Taiyuan Univ Technol, Key Lab Adv Transducers & Intelligence Control Sys, Minist Educ, Taiyuan 030024, Peoples R China
[4] Taiyuan Univ Technol, Coll Phys, Taiyuan 030024, Peoples R China
关键词
surface-enhanced Raman scattering; background; self-assembled monolayer; nanoparticle on mirror; plasmonic nanocavity; dark-field scattering; UP-CONVERSION; LIGHT; METAL; SERS; AU; PHOTOLUMINESCENCE; EMISSION; ORIGIN; MODES; SIZE;
D O I
10.3390/nano14010053
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-enhanced Raman scattering (SERS) has garnered substantial attention due to its ability to achieve single-molecule sensitivity by utilizing metallic nanostructures to amplify the exceedingly weak Raman scattering process. However, the introduction of metal nanostructures can induce a background continuum which can reduce the ultimate sensitivity of SERS in ways that are not yet well understood. Here, we investigate the impact of laser irradiation on both Raman scattering and backgrounds from self-assembled monolayers within nanoparticle-on-mirror plasmonic nanocavities with variable geometry. We find that laser irradiation can reduce the height of the monolayer by inducing an irreversible change in molecular conformation. The resulting increased plasmon confinement in the nanocavities not only enhances the SERS signal, but also provides momentum conservation in the inelastic light scattering of electrons, contributing to the enhancement of the background continuum. The plasmon confinement can be modified by changing the size and the geometry of nanoparticles, resulting in a nanoparticle geometry-dependent background continuum in SERS. Our work provides new routes for further modifying the geometry of plasmonic nanostructures to improve SERS sensitivity.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Surface-enhanced Raman scattering of 4,4'-bipyridine on gold nanoparticle surfaces [J].
Joo, SW .
VIBRATIONAL SPECTROSCOPY, 2004, 34 (02) :269-272
[42]   Surface-Enhanced Raman Scattering of Rat Tissues [J].
Aydin, Oemer ;
Kahraman, Mehmet ;
Kilic, Ertugrul ;
Culha, Mustafa .
APPLIED SPECTROSCOPY, 2009, 63 (06) :662-668
[43]   Surface-enhanced Raman scattering molecular nanoprobes [J].
Wabuyele, MB ;
Yan, F ;
Griffin, GD ;
Vo-Dinh, T .
Advanced Biomedical and Clinical Diagnostic Systems III, 2005, 5692 :209-215
[44]   Theory of Surface-Enhanced Raman Scattering in Semiconductors [J].
Lombardi, John R. ;
Birke, Ronald L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (20) :11120-11130
[45]   Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors [J].
Caldwell, Joshua D. ;
Glembocki, Orest ;
Bezares, Francisco J. ;
Bassim, Nabil D. ;
Rendell, Ronald W. ;
Feygelson, Mariya ;
Ukaegbu, Maraizu ;
Kasica, Richard ;
Shirey, Loretta ;
Hosten, Charles .
ACS NANO, 2011, 5 (05) :4046-4055
[46]   Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film [J].
Novikov, Sergei ;
Khriachtchev, Leonid .
SCIENTIFIC REPORTS, 2016, 6
[47]   Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption [J].
Le, Fei ;
Brandl, Daniel W. ;
Urzhumov, Yaroslav A. ;
Wang, Hui ;
Kundu, Janardan ;
Halas, Naomi J. ;
Aizpurua, Javier ;
Nordlander, Peter .
ACS NANO, 2008, 2 (04) :707-718
[48]   Trace Molecular Detection via Surface-Enhanced Raman Scattering and Surface-Enhanced Resonance Raman Scattering at a Distance of 15 Meters [J].
Scaffidi, Jonathan P. ;
Gregas, Molly K. ;
Lauly, Benoit ;
Carter, J. Chance ;
Angel, S. Michael ;
Vo-Dinh, Tuan .
APPLIED SPECTROSCOPY, 2010, 64 (05) :485-492
[49]   Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application [J].
Huang, Zhulin ;
Lei, Xing ;
Liu, Ye ;
Wang, Zhiwei ;
Wang, Xiujuan ;
Wang, Zhaoming ;
Mao, Qinghe ;
Meng, Guowen .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (31) :17247-17254
[50]   Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering [J].
Wang, Alan X. ;
Kong, Xianming .
MATERIALS, 2015, 8 (06) :3024-3052